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Chapter 1

Second Quantization

Solid state physics deals with collective behavior of many electrons against the
background of periodically placed ions. The need to treat the many-particle
system in a consistent and simple manner becomes imminent. In a departure
with the conventional treatment of a graduate course on solid state physics
we thus begin with a discussion of second quantization, which is just such a
formulation of a many-particle quantum system. Non-interacting Fermi gas is
introduced both as an illustration of the power and use of second quantization
and as a building block upon which the complications of real solids will be
founded.

1.1 Formulation

Think of a simple problem of putting a particle in a box. We already know that
the eigenstates of this particle are described by harmonic functions (sin’s and
cos’s) and that a wave function with more nodes (this is roughly speaking the
number of wavelengths that fit inside the box) generally has higher energy, etc.

Figure 1.1: A particle confined to a ring of radius R.

We can simplify the problem and solve instead the quantum-mechanical
problem of a particle confined to a ring of radius R as shown in Fig. 1.1. The
position of the particle can be labelled by the angle θ, or by x ≡ Rθ. The
Schrödinger equation expressed in terms of x will read1

− ~
2

2m

d2

dx2
ψ(x) = Eψ(x). (1.1)

1I typically omit the fine distinction between a total derivative dx and the partial derivative
∂x. It will be obvious from the context.
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6 CHAPTER 1. SECOND QUANTIZATION

This equation can be simplified by writing k2 = 2mE
~2 , then we will have

(
d2

dx2
+k2

)
ψ(x) = 0. (1.2)

The solution of this differential equation is eikx, e−ikx, or some linear combina-
tion of the two, Aeikx+Be−ikx. Because we are dealing with a particle on a ring,
we must also require that eigenfunction obey the property ψ(x + 2πR) = ψ(x).
This is the uniqueness condition of the wave function. Taking L ≡ 2πR, we im-
mediately see that only a special selection of k values will obey this constraint:

kL = 2πn, n = integer. (1.3)

As a result eigenenergies must also occur at special values

En =
~2

2m

(
2πn

L

)2

. (1.4)

What we described above is actually a very general procedure in dealing with
a quantum-mechanical problem. First we reduce the problem to some sort of
differential equation. The solutions of this equation are the eigenfunctions of the
problem at hand. Finally there are some constraints, such as the uniqueness of
the wave function discussed above, that restrict the allowed quantum numbers.
In the case of the particle on a ring the restriction was on the momentum
quantum number k, which in turn implied the quantization of energy. It can be
truthfully claimed that the essence of solving one-particle quantum mechanics
is all in the example just described. Now let’s ask what happens if we put two
particles on a ring.

It should be immediately obvious that one needs more than one coordinate
to describe the system, so let’s introduce x1 and x2 to denote the position of the
particles. The Schrödinger equation for the two-particle case will go something
like

− ~
2

2m

(
d2

dx2
1

+
d2

dx2
2

)
ψ(x1, x2) = Eψ(x1, x2). (1.5)

The eigenfunction ψ(x1, x2) depends on two coordinates because there are two
particles in the system. On the other hand one cannot help the notion that each
particle behaves more or less like what it did before when there was only one
particle on a ring. This will be particularly true provided the two particles do
not interact with each other. For example if these two particles were charged,
then there will be a Coulomb potential e1e2

|x1−x2| between the two, and one can
no longer say that the motions of the particles are independent.

For now we ignore this interaction effect and proceed to verify our intuition
about the independence of two particles. Writing ψ(x1, x2) = ϕ(x1)ϕ(x2) - this
is just separation of variables - and substituting it into Eq. (1.5) yields

(
d2

dx2
1

+k2
1

)
ϕ(x1) = 0,

(
d2

dx2
2

+k2
2

)
ϕ(x2) = 0, (1.6)
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and E = ~2
2m (k2

1 +k2
2). The energy is the sum of the energies of the individual

state ϕ(x1) and ϕ(x2), as should be the case if the two particles were indeed
non-interacting. Building on our experience with the one-particle problem we
know that each eigenfunction is characterized by a quantum number n, where
n is given by k = 2πn/L. Since there are two particles we better have two
numbers, (n1, n2), to completely specify the eigenstate of the system.

The associated two-particle eigenfunction can be written down as φn1(x1)φn2(x2).
This will indicate the physical state where particle number 1 resides in the eigen-
state of quantum number n1, and the particle number 2 in the state with quan-
tum number n2. One can also ask to write down the eigenstate with the two
particles located in n2 and n1. However, since the two particles are assumed
identical, this is really the same state as the the first state we wrote down.
Loosely speaking, we have

φn1(x1)φn2(x2) ∼ φn1(x2)φn2(x1). (1.7)

So which state do we choose to describe the state that is characterized by the
occupation of the two quantum states (n1, n2): |n1n2〉? The answer is given
by Pauli’s exclusion principle that states that no two electrons shall occupy the
same quantum state. This statement finds its mathematical incarnation in the
following linear combination:

ψ(x1, x2) =
1√
2
[φn1(x1)φn2(x2)−φn1(x2)φn2(x1)]=

1√
2

∣∣∣∣
φn1(x1) φn1(x2)
φn2(x1) φn2(x2)

∣∣∣∣ .

From the well-known theorem of linear algebra one finds that this wave function
vanishes if n1 = n2 (two rows are equal). Vanishing of the wave function implies
zero probability of its occurring, so it will never happen. Similarly one finds
that the wave function vanishes if x1 = x2 (two columns are equal). This some-
times leads to the alternative version of Pauli’s principle that says that no two
electrons shall occupy the same place in space. The overall factor 1/

√
2 is in-

serted so that the two-particle wave function ψ(x1, x2) is once again normalized:∫
dx1dx2|ψ(x1, x2)|2 = 1. One can check this as an exercise problem.

For three particles on a ring, the same reasoning (and a little bit of math-
ematical ingenuity) will allow you to write down the wave function that also
obeys Pauli’s principle:

ψ(x1, x2, x3) =
1√
3!

∣∣∣∣∣∣

φn1(x1) φn1(x2) φn1(x3)
φn2(x1) φn2(x2) φn2(x3)
φn3(x1) φn2(x2) φn3(x3)

∣∣∣∣∣∣
.

Generalization to arbitrary N -electron system should now be obvious. Professor
Slater realized this is the right way to write down the wave function for N -
electron problems, so this type of determinant expression for the wave function
is often known as the Slater determinant. Although the Slater determinant wave
function is correct, working with it is another matter: It is too cumbersome! So
a more convenient method of expression will have to be invented. It is call the
“second quantization”. Second quantization is just a convenient way to express
the wave function for a many-particle system. Before we discuss the formalism,
we are reminded once again that the whole information contained in the wave
function such as Eq. 1.8 can be conveniently summarized as |ψ〉 = |n1, n2, n3〉.
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We generalize to N -particles confined on the same ring. Naturally the eigen-
state is characterized by N integers, (n1, n2, ..., nN ), each ni specifying the state
of the particles that make up the system. Now let’s discuss a different, yet com-
pletely equivalent way of describing the same state. Instead of worrying about
which particle is in what state, we simply state how many particles there are
in each state. For example if there are 10 particles on a ring and three of them
are in n=1 state, four in n=2 state, and the remaining three in n=3 state, then
we say the state is |3, 4, 3, 0, 0, ...〉. The numbers from left to right indicate how
many particles there are in each eigenstate. Generally the state will be given
the assignment |N1N2N3 · · · 〉 with Ni the number of particles in i-state.

There is an extremely nice way of writing down arbitrary many-particle
states on a ring by invoking what’s called creation operators a†n for each state
n. For instance |3, 4, 3, 0, 0, ...〉 would be written (a†3)

3(a†2)
4(a†1)

3|0〉. This ex-
pression, when read from right to left, says the following: Out of the vacuum
|0〉 (a state with no particles) insert(create) three particles into eigenstate 1
(a†1a

†
1a
†
1 = (a†1)

3), then four particles into state n=2 ((a†2)
4), and finally three

into state n=3 ((a†3)
3).

Suppose now we want to remove one of the particles that were previously
in n=3 state. Since adding a particle was given the notation a†n, we define
an to express the act of removing a particle from state n. The desired state
consisting of 3 particles in n=1, 4 particles in n=2, and 2 particles in n=3 is
given by a3(a

†
3)

3(a†2)
4(a†1)

3|0〉. On the other hand, it should be no surprise that
a completely equivalent state is given by (a†3)

2(a†2)
4(a†1)

3|0〉 because now there
are two particles occupying 3-state. Thus, we must have a3(a

†
3)

3 ∼ (a†3)
2, or

more generally

aα
n(a†n)β |0〉 ∼ (a†n)β−α|0〉, β ≥ α. (1.8)

There are a set of rules that these annihilation/creation operators must obey,
which we list below.

a†ma†n = a†na†m
anam = aman

ama†n = a†nam (n 6= m)
ama†m = a†mam + 1. (1.9)

If you like, you may take the set of commutation rules given above as ansatz, just
as the Schrödinger equation or the Newton’s equation are ansatz about the laws
of nature. We uphold these equations as sacred only because by doing so, we get
wonderful agreement between our theoretical expectation and the experimental
outcome. In the same vein the commutation rules, as they are known, shown
in Eq.(1.9) are the ansatz that proved to be in wonderful agreement with the
minute-to-minute workings of nature.

The first two lines of Eq. (1.9) say that when we remove or add particles from
states m and n, it doesn’t matter in which order we carry out the procedure.
The end result is the same. The third line says more or less the same thing,
provided m is not the same state as n. The last line is tricky because there is
a difference of one between ama†m and a†mam. In one instance this statement
is saying something obvious. When we let both sides of the fourth line act on
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the vacuum, then ama†m|0〉 must return the vacuum again. But we cannot say
a†mam|0〉 is the vacuum because am|0〉 is a state that would have -1 particle.
Such a statement is absurd and cannot possibly exist, so we write am|0〉 = 0.
The zero on the r.h.s. simply says this operation doesn’t make physical sense.
Without the +1 term in the fourth line of Eq. (1.9), we would have |0〉 = 0,
but thanks to the factor +1, we get |0〉 = +|0〉! The important point is that the
commutation algebra [am, a+

m] = 1 holds true regardless of the quantum state
on which the operators act.

There are two types of particles in nature. One are bosons and they obey
the commutation rules displayed in Eq. (1.9). The other are fermions, such
as electrons and quarks, and they obey a different kind of rule, known as anti-
commutation relation:

c†mc†n = −c†nc†m
cncm = −cmcn

cmc†n = −c†ncm (n 6= m)
cmc†m = −c†mcm + 1. (1.10)

Here cm(c†m) annihilates(creates) a particle, a fermion, in state m. Compared
with the rules of bosons, one finds minus signs everywhere. This sign difference
has powerful consequences. Let us just mention one here. Because c†mc†n =
−c†nc†m applies for m = n as well, the same operation applied twice in a row
gives (c†m)2 = 0. This means that by adding two particles on an existing state,
call it |ψ〉, we get nothing because (c†m)2|ψ〉 = 0. This means adding two
particles in the same state is forbidden in quantum mechanics for the fermions.
In particular if |ψ〉 = |0〉, we get (c†m)2|0〉 = 0. This implies that a given state
m can be either empty (|0〉), or singly occupied (|1〉), but never anything else.
This is the Pauli exclusion principle.

Using the annihilation/creation operators constructed above, we can de-
scribe all of the quantum-mechanical processes imaginable. For example, as
described earlier, adding a particle to a particular state m is given the “code
name” c†m, and annihilating one that is already in state m is noted cm. What
about moving a particle from one state, say m, to another state n? A short
moment’s reflection will lead to the conclusion that this can be achieved by first
annihilating a particle which already existed at m, then creating the same par-
ticle in the new state n: ∼ c†ncm. Of course one can do it the other way around,
cmc†n, but due to the commutation relations they are essentially the same thing.

Now, we introduce an interesting quantity that is also very important in the
construction of the Hamiltonian: c†mcm. At first sight it seems that this does
essentially nothing to the state on which it acts, because a particle that has been
removed is immediately put back into the original state. In quantum mechanics
two states |ψ1〉 and |ψ2〉 are the same if they are equal up to a constant factor
|ψ1〉 = η|ψ2〉. Then c+

mcm|ψ〉 returns |ψ〉 up to a multiplicative constant. The
answer for arbitrary state |m〉 is

c+
mcm|Nm〉 = Nm|Nm〉. (1.11)

If the state contains Nm particles in m-state, c+
mcm returns the same state with
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the particle number Nm multiplying it. The proof is left as an exercise. c+
mcm

is known as the number operator for an obvious reason.
Using the number operators it is straightforward to construct the Hamil-

tonian in the second-quantization form. It is

H =
∑
m

εmc†mcm =
∑
m

εmNm. (1.12)

εm is the eigenenergy of the single-particle state obtained from diagonalizing
the Schrödinger equation. The Hamiltonian measures the total energy of the
system, which is nothing but the sum of the individual eigenenergies multiplied
by the number of particles that occupy the state.

1.2 Free electron sea of a metal

The qualitative picture of the behavior of electrons in a metal has been proposed
a long time ago, almost immediately after the birth of quantum mechanics. Ig-
noring the Coulomb repulsion between two electrons for a moment, each electron
in a metal is considered a free particle. The quantum-mechanical description of
a free particle in three dimensions is given by the Schrödinger equation

− ~
2

2m
∇2ψ(x, y, z) = Eψ(x, y, z) (1.13)

with a solution ψk(r) = 1√
V

eik·r and the corresponding energy Ek = ~2k2/2m.
The volume of the box in which the electrons are enclosed is V .

The process of putting an electron in the particular k-state is denoted c+
k |0〉,

where |0〉 represents an empty box, with zero electron number. Electron has a
spin (one up and one down), and the same momentum state k can be occupied
by one spin-up electron and one spin-down electron. Let’s say we are putting an
electron in momentum-k and spin-↑ state. Such process is given the expression

|k ↑〉 = c+
k↑|0〉.

We have an Avogadro’s number of electrons each waiting for its place in this
box, so we have to decide where to put the second electron in this box. One
can only put an electron in one of the eigenstates of the Hamiltonian (1.13).
That’s simply what the eigenstate means. We can put the second electron, for
instance, in the same k state, but with a different spin, and the result would be
a state given by

|k ↓,k ↑〉 = c+
k↓c

+
k↑|0〉.

A third electron inserted in momentum-p, spin-↑ state will turn it into c+
p↑c

+
k↓c

+
k↑|0〉.

Now the rule is almost self-evident. For N electrons occupying a set of levels
defined by {ki, σi}, i = 1, · · · , N , the N -electronic state is given by

|ψ〉 =
∏

{kσ}
c+
kσ|0〉. (1.14)
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The product runs over N different labels of {kσ}. The lowest energy state is
obtained if we categorically place two electrons of opposite spins in the succes-
sively higher energy states, starting from the very lowest energy. Such a state
is simply represented by

|FS〉 =
∏

|k|<kf

c+
k↓c

+
k↑|0〉. (1.15)

This is the lowest possible energy state for N non-interacting electrons, i.e. it
is the ground state. The highest-energy state occupied by the electron has an
energy Ef related to the Fermi momentum kf by

Ef =
~2k2

f

2m

and is called the Fermi energy. The contour consisting of k-states having the
same energy is in the shape of a sphere in three-dimensional space spanned by
(kx, ky, kz). The highest-energy states form such a sphere too, which is called the
Fermi surface. Some experimental techniques can directly measure the Fermi
surface contour of a given metal and we will discuss the measurement techniques
later.

Fermi momentum kf has a close connection to the average electron density
ρ = N/V . To see how to relate kf to ρ, first think about a sphere of radius kf

in momentum space. All electrons live inside this sphere, so the total electron
number is proportional to the volume of the sphere. The volume is given by
4πk3

f/3. If we divide this by the volume occupied by each electron, then we
must obtain N/2. The extra factor 2 is due to the spin degeneracy.

So what is the volume of k-space occupied by each electronic state? To find
the answer to this, go back to the free-electron Schrödinger equation, whose
solution for a box of sides (Lx, Ly, Lz) is characterized by k:

k = 2π

(
nx

Lx
,
ny

Ly
,
nz

Lz

)
.

Using this result it is easy to see that the volume associated with each state is
just (2π)3/LxLyLz = (2π)3/V . So we have

N

2
=

(4πk3
f/3)

(2π)3/V
=

V k3
f

6π2
.

Since N/V = ρ, the density is indeed related to kf through

ρ =
k3

f

3π2
, k3

f = 3π2ρ. (1.16)

Due to this relation the Fermi energy is also related to the electron density via

Ef =
~2

2m
(2π2ρ)2/3. (1.17)

In typical metals the Fermi momentum is roughly the inverse of the lattice
spacing, kf ∼ 1/a. The Fermi energy is typically of order ~2/2ma2. Recall that
the ground state level of the hydrogen atom also has an energy of order e2/a.
Due to the virial relation this is also the amount of the kinetic energy ~2/2ma2,
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so we infer that the Fermi energy is roughly 10 eV for a typical metal. To make
this argument more precise, we write

Ef =
~2

2ma2
B

(kfaB)2 =
e2

2aB
(kfaB)2 (1.18)

using the Bohr radius of hydrogen atom aB and the known relation between
potential and kinetic energies ~2/2ma2

B = e2/2aB . The energy unit e2/2aB is
known as the Rydberg (Ry), equal to 13.6 eV. As I said, kfaB ∼ 1, and Ef ∼1
Ry.

There’s also the concept known as the Fermi temperature that’s related to
the Fermi energy by Ef = kBTf , kB being a Boltzmann’s constant. The typical
conversion factor is 104 Kelvin for 1 electron volt, so the Fermi energy of 10
eV corresponds to 105 degrees. An extensive list of Fermi energies and Fermi
wavevector for an assortment of metals is given in p. 139, Kittel (8th Ed.), or
on p. 38, Ashcroft & Mermin.

Some of the modifications brought about in a real crystal are ionic poten-
tials, various imperfections of both magnetic and non-magnetic characters, and
multiple band structures, to name a few. We will cover as much of these as time
allows.

1.3 Exercise

[1][20pts]2 (a) Prove that the normalized eigenstate consisting of Nm particles
occupying the state m is given by

|Nm〉 =
(a+

m)Nm

√
Nm!

|0〉. (1.19)

(b) Prove that for any eigenstate Nm, a+
m|Nm〉 =

√
Nm + 1|Nm + 1〉, and

am|Nm〉 =
√

Nm|Nm − 1〉. Prove a+
mam|Nm〉 = Nm|Nm〉, as a corollary.

[2][20pts] Work out kf and Ef as a function of electron density ρ in one- and
two-dimensional electron gas.

[3][10pt] What is the Hamiltonian of a free Fermi gas?

[4][10pt] Show that the two-particle wave function ψ(x1, x2) given in Eq. (1.8)
is normalized to unity as long as the individual wave functions φn1(x1) and
φn2(x2) are orthonormal:

∫
φ∗m(x)φn(x)dx = δmn.

2Homework problems will be graded in multiples of 5, e.g. 5 pts, 10 pts, etc.



Chapter 2

Tight-binding Model

One aspect of the electron motion in a solid which markedly departs from that
in free space is that the motion is subject to a periodic potential created by the
ions. The tight-binding method offers a simplistic view of the modification in
the electronic motion and the energy levels caused by the potential which is both
easy to grasp and still of much practical value. We begin with a discussion of
Bloch’s theorem, a general statement about the wave functions of Schrödinger’s
equation with periodically modulated potential, and the Kronig-Penny model
which is the simplest exactly solvable model with the periodic potential. Tight-
binding Hamiltonian is introduced using the language of second quantization
we learned in the previous chapter and it is applied to a number of lattice
structures.

2.1 Bloch’s theorem

By a periodic potential we mean the type of potential obeying V (r+R) = V (r)
for any vector R connecting two ionic sites. The Hamiltonian of electronic
motion in a solid is governed by the Schrödinger’s equation

H = − ~
2

2m
∇2ψ(r) + V (r)ψ(r) = Eψ(r). (2.1)

How are we going to proceed to find the solution of this Hamiltonian? The
question has been answered by F. Bloch in an elegant fashion using no more
than Fourier analysis.

We present a heuristic derivation of Bloch’s approach in one dimension.
Since V (x) is periodic over the lattice spacing a, V (x + a) = V (x), its Fourier
expansion must be of the form

V (x) =
∞∑

m=−∞
VmeimGx (2.2)

where G refers to G = 2π/a. The vector1 G and all its integer multiples are
collectively known as reciprocal lattice vectors. Vm are some coefficients whose
exact value depends on the exact form of V (x) and obeys the relation V−m = V ∗

m.

1It will be a vector in two and three dimensions.

13
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On the other hand, there is no a priori reason why the wave function ψ(x)
should also have the same periodicity. Instead we impose the periodic boundary
condition ψ(x + L) = ψ(x), where L is the dimension of the lattice. Then ψ(x)
has the Fourier expansion

ψ(x) =
∞∑

n=−∞
ψnei(2πn/L)x. (2.3)

The set of allowed modes in the expansion of ψ(x) is far denser than that of
allowed wave vectors in the Fourier expansion of V (x) by the ratio L/a.

Bloch’s proof is quite general in the sense that it applies to an arbitrary
periodic potential V (x), but in the spirit of keeping things simple but not simpler
we will maintain the simplest form of periodic potential V (x) = V1(eiGx +
e−iGx) = 2V1 cos[Gx], G = 2π/a, in the derivation. Plugging in the Fourier
expansion of ψ(x) [(2.3)] and V (x) [(2.2)] in the Schrödinger equation, one
obtains

∑

k

eikx

(
E − ~

2k2

2m

)
ψk = V1(eiGx + e−iGx)

∑
p

eipxψp. (2.4)

Each component multiplying a plane wave eikx from either side of this equation
must match. That means only the components of p which equal k + G or k−G
survives in the sum:

(
E − ~

2k2

2m

)
ψk = V1(ψk+G + ψk−G). (2.5)

The set of k vectors runs over all integer multiples of 2π/L, whereas G =
2π/a. Only a small subset of different k vectors are connected by the periodic
modulation corresponding to wave vector G. Without any loss of generality
one can restrict k values within the range [−G/2, G/2] which is known as the
Brillouin zone. There are a total of (2π/a)/(2π/L) = L/a different k states in
the Brillouin zone. This number is also equal to the number of lattice sites in
the lattice.

For each k in the Brillouin zone Eq. (2.5) defines a coupled linear equation
that offers a set of eigenenergies Eα

k and a set of eigenfunctions, also labeled by
α. Going back to the original problem given in Eq. (2.1) we conclude that the
eigenstate of the Hamiltonian is characterized by two indices, k and α. Each
such eigenstate is denoted ψα

k (x), and the corresponding eigenenergy, Eα
k . The

eigenstate in the Fourier expansion appears as

ψα
k (x) =

∞∑
n=−∞

ψα
k+nGei(k+nG)x (2.6)

where ψα
k+nG are the coefficients which satisfy Eq. (2.1). Using a more general

V (x) will complicate the r.h.s. of Eq. (2.5), but the fact remains that there are
a set of independent solutions labeled by α, for each k in the Brillouin zone.
The expression (2.6) is the most general form imaginable for the solution of the
periodic potential problem.

The solution thus found has a peculiar property. Since only a set of k’s
differing by G = 2π/a are connected, the real-space function has the property
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ψα
k (x + a) =

∞∑
n=−∞

ψα
k+nGei(k+nG)(x+a) = eikaψα

k (x). (2.7)

The wave function ψα
k picks up a phase factor eika every time it is translated

by one lattice spacing a. This is a property that must be obeyed by all eigen-
functions of the problem, and the phase factor depends only on k, not on α.

The whole argument is easily generalized to higher dimensions.

2.2 Kronig-Penney Model

In this section we consider an exactly solvable case of electronic motion in one
dimension. The potential experienced by the electron has to be periodic over
lattice spacing a, and we choose a series of delta functions as the potential:
V (x) = V0δ(x− na).

Figure 2.1: The Kronig-Penney Model

Schrödinger’s equation for a particle constrained to this type of potential is

(
− ~

2

2m

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x). (2.8)

The solution to this equation is given by the form

ψn(x) = Aneik(x−na) + Bne−ik(x−na) (2.9)

where (n−1)a < x < na, because in this region the potential vanishes. Although
the wave function has this form in any region the coefficients, An and Bn, differ
for every region. The goal is to find these coefficients constrained by some
boundary conditions.

The first boundary condition is that the wavefunction must be continuous
when we go from one region(say n) to an adjacent region(say n +1). This gives

ψn(na) = ψn+1(na). (2.10)

The next boundary condition can be obtained by integrating Schrödinger’s equa-
tion from 0− to 0+ of x = na and noting the continuity of the wave function,
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ψ′n+1(na)− ψ′n(na) =
2mV0

~2
ψn(na). (2.11)

The third boundary condition is Bloch’s theorem, which is discussed in the
previous section, states that in a periodic potential the wavefunction can be
chosen to satisfy

ψ(x + a) = eiϕψ(x) (2.12)

for some suitable ϕ.

In summary, we have the following boundary conditions,

• ψn(na) = ψn+1(na)

• ψ′n+1(na)− ψ′n(na) = 2mV0
~2 ψn(na)

• ψ(x + a) = eiϕψ(x)

From the last of the above boundary conditions we have

An+1 = Aneiϕ (2.13a)
Bn+1 = Bneiϕ (2.13b)

From the rest of the boundary conditions we have

An + Bn = Aneiϕ−ika + Bneiϕ+ika

ik(An −Bn)− ik(Aneiϕ−ika −Bneiϕ+ika) +
2mV0

~2
(An + Bn) = 0.

(2.14)

These two equations may be rewritten as

(1− eiϕ−ika)An + (1− eiϕ+ika)Bn = 0(
1− eiϕ−ika − 2imV0

k~2

)
An −

(
1− eiϕ+ika +

2imV0

k~2

)
Bn = 0

(2.15)

or written in matrix form,



1− eiϕ−ika 1− eiϕ+ika

1− eiϕ−ika − 2imV0
k~2 −(1− eiϕ+ika + 2imV0

k~2 )







An

Bn


 =




0

0


 .

(2.16)

In order for An and Bn to have nontrivial solutions the determinant of the
square matrix above must equal zero,
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(
1−eiϕ−ika

)(
1−eiϕ+ika +

2imV0

k~2

)
+

(
1−eiϕ+ika

)(
1−eiϕ−ika− 2imV0

k~2

)
= 0.

(2.17)
Some algebraic manipulation leads to

cos ϕ = cos(ka) +
mV0

k~2
sin(ka). (2.18)

Since cos ϕ can only have values between −1 and 1(the area between the blue
lines in figure 2.2), only the k-regions marked by the red lines in Fig. 2.2 give
possible values of k. For other k-values one cannot find φ which satisfies Eq.
(2.18). The eigenenergy for the state given in Eq. (2.9) is ~2k2/2m, but not all
k-values correspond to the eigenstate. This leads to gaps in the energy spectrum
as shown in Fig 2.2.

Figure 2.2: Plot of cos(ka) + mV0
k~2 sin(ka). The regions where this function lies

within the interval [−1, 1] are indicated as red lines.

Figure 2.3: Gaps in the energy spectrum induced by the periodic potential

The Kronig-Penney model demonstrates a marked feature of the electronic
motion in a periodic solid, namely the appearance of an energy gap separating
different energy bands.
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Figure 2.4: Electron hopping on a periodic lattice

2.3 Tight-binding Hamiltonian

To a first approximation electrons get strongly attracted to the ionic centers
with the Coulomb force. The atomic picture of an electron orbiting a single
ion is modified by coupling which enables the electron to hop from one ionic
site to the next one. The origin of the coupling is that the electronic wave
functions for each ion have a finite overlap with those of the neighboring one.
Tight-binding model offers a simplistic yet very useful way to model these two
competing tendencies which occur in any solid.

Consider the motion of electrons on a ring similar to our consideration in
the previous chapter, but this time, electrons can only occupy a selection of N
discrete states evenly spaced along the circumference of the ring. Figure 2.4
illustrates N=5 case.

Let’s first think about what it means for an electron to occupy a given site
i. We can for example think of each site as a potential well with its own set
of energy spectra. For simplicity we assume that each well has only one energy
level, with energy −ε0, although a real atom should possess many such levels.
If an electron occupies that level, the system acquires an energy −ε0. If there
is no electron in that state the system’s energy is zero.

This statement can be translated in the second-quantized language using
the Hamiltonian H = −ε0c

†c. We know that Hamiltonian is an operator whose
expectation value returns the energy and we also know c†c measures the number
of electrons in that state. So our previous statement translates into 〈H〉 =
−ε0〈c†c〉, or (energy)=(−ε0)×(number of electrons present in that state) and
indeed this is the correct statement.

The case in question has N identical potential wells, each characterized by
the same binding energy −ε0. The Hamiltonian in this case is H =

∑
i(−ε0)c

†
i ci,

where c†i ci measures electron occupation in the i-th site. Now the statement
about the energy becomes

(total energy)=
∑

i(−ε0)×(number of electrons at site i).

This is intuitively clear. However we know that this is not the most general
circumstance that can occur quantum-mechanically. The potential wells are
not completely disjoint. Instead, wave functions localized at adjacent sites i
and j have some non-zero overlap causing tunneling between localized levels.
How do we add tunneling effect in our Hamiltonian?

What the tunneling does is, pictorially speaking, remove a particle from
position i and put it at position j, across a tunneling barrier (Fig. 2.5). In the
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j ji i

before 

tunneling

after

tunneling

Figure 2.5: Electron hopping from site i to j

second-quantized language this phenomenon is expressed by the term −t(c†jci +
c†i cj). For example, c†jci acting on a state |1〉i|0〉j (i = occupied, j = empty)
returns |0〉i|1〉j . This is the quantum-mechanical expression for a particle that
“hops” from i to j. Since this occurs for every adjacent pair of sites, the new
Hamiltonian with the tunneling effect should read

H = −ε0
∑

i

c†i ci − t
∑

i

(c†i+1ci + c†i ci+1). (2.19)

t is some number characteristic of how strong the tunneling effect is. Real
electrons also carry spin, so the above Hamiltonian must be replaced by the
following one:

H = −ε0
∑

iσ

c†iσciσ − t
∑

i

(c†i+1σciσ + c†iσci+1σ). (2.20)

If t is nonzero, an electron can hop from i to i +1. Since there is nothing to
prevent the same electron to hop from i+1 to i+2, and so forth, it should be
possible for an electron to make a complete tour of the ring and come back to
its original position. In effect, an electron gets “delocalized”. We will now prove
this statement.

As stated in the previous section, Felix Bloch first showed how to write down
the eigenstate of the Hamiltonian such as (2.19). The trick is to re-write

ci =
∑

k

(
1√
N

eikri

)
ck, c†i =

∑

k

(
1√
N

e−ikri

)
c†k. (2.21)

Let me first explain the terms appearing on the right. ri is a for site label 1,
2a for 2, etc, ri = ia. The lattice constant a measures the distance between
neighboring sites. ck is an operator that removes a particle from a state k, just
like ci is an operator that removes a particle from site i.

Because of the ring structure we have started with, we must have ci+Na = ci,
because site i+Na is nothing but site i itself. Then the r.h.s. of Eq. (2.21)
must have this property, too. Since

ci+Na =
∑

k

1√
N

eik(ri+Na)ck =
∑

k

1√
N

eikri × eiNkack. (2.22)

the desired property will be fulfilled if eiNka = 1. To ensure this, we must
have k = (2π/Na)×integer. Let’s label different integer values by m, and write
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k = 2πm/Na. Now the meaning of
∑

k is clear. In fact it is a sum over different
m values. So we write

ci =
1√
N

∑
m

exp
[
2πi

m

N
· ri

a

]
cm. (2.23)

We will use cm and ck interchangeably because they mean the same thing.
Notice the structure of the terms that enter in the exponent. ri/a is always an
integer, therefore one has

exp
[
2πi

(ri

a

)
×m

N

]
= exp

[
2πi(some integer)×m

N

]
. (2.24)

In the above expression m values that differ by some multiple of N always gives
the same value of the exponential. This means that not all m′s are independent.
For example, m = 0, 1, ..., N−1 give different values of the exponential. Any
other values of m will give rise to an exponential identical to what one gets from
the choice m∈ [0, ..., N−1], and hence not independent. To conclude, we must
restrict the sum in Eq. (2.23) such that

ci =
1√
N

N−1∑
m=0

exp
[
2πi

m

N
· ri

a

]
cm. (2.25)

Now it is left as an easy exercise to prove that if ci
′s were to satisfy the commu-

tation algebra {ci, c
†
i}=1 and other relation discussed in the previous chapter,

we must require that cm
′s obey a similar algebra,

cmc†m + c†mcm = 1

cmc†m′ + c†m′cm = 0 (m 6=m′), etc. (2.26)

After these exercises we can begin to recognize cm, c†m as annihilation and cre-
ation operators associated with the state labelled by m, or by k=2πm/Na. k is
a momentum eigenvalue, and our new operators c†m, cm add/remove a particle
at the momentum eigenstate labelled k. Armed with these formalities, we di-
rectly substitute Eq. (2.25) into the Hamiltonian (2.19) and find some magical
thing happen! In fact H has been turned into

H =
∑

k

(−ε0 − 2t cos ka)c†kck =
∑

k

εkc†kck. (2.27)

Based on our previous training we should interpret the last term as

(total energy) =
∑

k

(energy of k-state)× (number of electrons in k -state).

(2.28)
When such interpretation is possible, we should think of εk as eigenenergy, and
c†k and ck as operators adding/removing electrons to/from an eigenstate k.

Previously when we had t = 0, each eigenstate was labelled by the site i in
which the particle is localized. When t 6= 0, site i is no longer the proper way
to characterize eigenstates. Instead the correct eigenstate is the one having a
definite momentum k. How many different eigenstates there are is determined
by the different values allowed for k = (2π/Na)m. There are N different m
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values leading to N independent eigenstates. Each eigenstate has an energy
given by −ε0 − 2t cos(2πm/N). Previously when t = 0, there were also N dif-
ferent eigenstates, having to do with different localized sites. Now with t 6= 0
there are still the same number of states, but they are all extended. It was an
important statement at the time Bloch first produced his eigenstates because
it says electrons are spread out even though there are potential barrier. This is
also why electrons can move easily through dense array of positive ions in solids.

2.4 Application to realistic lattice structures

The tight-binding method gives a rough idea of the band structure depending on
the geometry of the lattice. Although quite naive and much less accurate than
the full-blown LDA calculations, the method is easily adapted to any type of
lattice in any dimensions. It is also a very efficient way to identify the Brillouin
zone for a given lattice geometry.

Square lattice: For two-dimensional square lattice an electron at site i can
hop to any one of its four neighbors at i± x̂, and i± ŷ. Hence the tight-binding
Hamiltonian reads

H = −t
∑

i

(c+
i+x̂ + c+

i−x̂ + c+
i+ŷ + c+

i−ŷ)ci − µ
∑

i

c+
i ci

= −t
∑

〈ij〉
(c+

j ci + c+
i cj)− µ

∑

i

c+
i ci (2.29)

where 〈ij〉 indicates all nearest-neighbor pairs of the lattice. We have suppressed
the spin index because it does not affect the energy spectrum at all. Using the
expansion

ci =
1√

NxNy

∑

k

eik·rick =
1√
N

∑

k

eik·rick (2.30)

the Hamiltonian is brought into the diagonalized form

H =
∑

k

(εk − µ)c+
k ck

k = (kx, ky), ri = (xi, yi) (2.31)

where εk = −2t[cos kx + cos ky] when the lattice constant a is taken to unity.
Here we observe that the energy εk is periodic in both kx and ky with the period
of 2π. Only those k vectors not connected by multiples of 2π are to be regarded
as independent. This leads to the concept of the first Brillouin zone, or 1BZ
for short, which for the square lattice is given by [−π, π] × [−π, π]. The total
number of independent states (independent k vectors) that fit inside the 1BZ
is Nx × Ny = N , exactly matching the total number of allowed states on the
square lattice consisting of N sites.
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Triangular lattice: The same approach applied to the triangular lattice with
nearest-neighbor hopping gives the diagonalized Hamiltonian of the form (2.31)
with εk = −2t[cos kx + cos(kx/2 +

√
3ky/2) + cos(kx/2−√3ky/2)]. In general,

for a Bravais lattice, the tight-binding energy spectrum is of the form

εk = −t
∑

j∈i

eik·(rj−ri) (2.32)

encompassing all nearest-neighbor sites j for i.

Hexagonal lattice: The square and triangular lattices belong to the type of
lattice structure known as the Bravais lattice, which refers to the cases having
one atomic site per unit cell. In other words, every site looks exactly the same as
every other site in the whole lattice. The same cannot be said of the hexagonal
lattice, which is an example of a non-Bravais lattice. There are two inequivalent
sites in a lattice rather than one. Calling them A-sites and B-sites, for instance,
one can formally divide the fermion operators as those belonging to A and B
sublattices respectively.

cA
i =

1√
NA

∑

k

cA
k eik·ri

cB
i =

1√
NB

∑

k

cB
k eik·ri (2.33)

where ri refers to the coordinate of each lattice site. The tight-binding Hamil-
tonian for the hexagonal lattice is written out as

H = −t
∑

i∈A

c+
BjcAi − t

∑

i∈B

c+
AjcBi − µ

∑

i∈A

c+
AicAi − µ

∑

i∈B

c+
BicBi. (2.34)

On writing down the Hamiltonian in momentum space using Eq. (2.33),

H =
(

c+
Ak c+

Bk

) ( −µ −t
∑

j∈i eik·(rj−ri)

−t
∑

j∈i e−ik·(rj−ri) −µ

)(
cAk

cBk

)
.

(2.35)
Diagonalizing the matrix finally gives the energy spectrum of the hexagonal
lattice

εk = −µ± |
∑

j∈i

eik·(rj−ri)|

= −µ± |eikx + eikx/2+i
√

3ky/2 + eikx/2−i
√

3ky/2|

= µ±
∣∣∣∣∣3 + 2

(
cos

(
kx

2
+
√

3
2

ky

)
+ cos

(
kx

2
−
√

3
2

ky

)
+ cos

√
3ky

)∣∣∣∣∣
(2.36)

The ± sign refers to two different energy values allowed for a given k. There
are two bands, which touch each other at certain isolated points in k-space.
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Contrast this with the situation obtained for the Bravais lattice which had
only one band corresponding to each k. The appearance of multiple bands
is closely tied to the existence of multiple lattice sites in a unit cell. In the
hexagonal lattice, the unit cell having two inequivalent sites is the reason for
having two band energies for a given k.

The Hamiltonian around each localized k-point is similar to the Dirac Hamil-
tonian of the relativistic particles in two dimensions. In the next chapter we
will construct a Hamiltonian with multiple bands with a clear energy gap sep-
arating the upper and lower bands. This type of band structure gives rise to
an insulator. The graphite is interesting because it lies in the middle between
a metal (having a finite DOS at the Fermi level) and an insulator (having zero
DOS at the Fermi level).

2.5 Exercise

[1][20pts] Generalize Bloch’s argument to two dimensions using the periodic
potential V (x, y) = 2V1(cos kxx + cos kyy) for a square lattice with spacing a.
Identify the Brillouin zone.

[2][30pts] Solve Eq. (2.5) assuming only ψk, ψk+G and ψk−G were non-zero.
You will have derived an equation which is cubic in E. Find the solution of the
cubic equation numerically and plot Ek for three different branches.

[3][10pts] Prove Eqs. (2.26).

[4][10pts] Prove Eq. (2.27).

[5][20pts] Diagonalize the tight-binding Hamiltonian for the two-dimensional tri-
angular lattice. Identify the Brillouin zone. Show that it is in the shape of a
hexagon.

[6][20pts] Identify the first Brillouin zone for the tight-binding energy band
of hexagonal lattice. Identify the k-points where the upper and lower energy
dispersion in the hexagonal lattice meet each other.
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Chapter 3

Description of metals and
insulators

A metal conducts electricity; an insulator does not. That’s the common way
to distinguish metals and insulators. But is this also the fundamentally right
way to distinguish the two states of matter? Come to think of it, because
a metal is also a good conductor of heat one can equally well characterize a
metal by its thermal, not electrical, properties. And yet both high electrical
and thermal conductivities are a consequence of a more fundamental property
of a metal, namely the presence of arbitrarily low-energy excitations above the
ground state. In this chapter we discuss how the quantum mechanics of solids
allows us to characterize metal from insulator in a clean way as a system with
no energy gap and arbitrarily small excitations, or a system with a well-defined
energy gap in the thermodynamic limit.

3.1 Metal vs. Insulator

The free electron model ignored the effects of the lattice and obtained the single-
energy spectrum as if the electrons were moving in a vacuum. The lattice
potential, as we saw in the tight-binding approach, modified the energy spectrum
considerably. The new spectrum had both the lower and upper bound, unlike
the free electron spectrum which had the lower bound only. Going back to
the one-dimensional lattice as an example, we had an energy dispersion of an
electron given by

εk = −2t cos k − µ (3.1)

where k is constrained by the condition eikL = 1, or k = 2πn/L; lattice spacing
is taken to unity. If you count how many distinct k’s are allowed, you find that
there are as many different k’s as there are lattice sites. Including spin degrees
of freedom, a given tight-binding band allows only 2L different electrons to be
occupied. Even if you have more than 2L electrons, there is no way they can
be accommodated in a single tight-binding band. Such a problem never arose
in the free electron model because the energy spectrum had no upper bound.
Then where will the excess electrons go? For real solids there are usually several

25
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energy bands, each of which is given a dispersion similar to the one given in Eq.
(3.1). The excess electron will occupy the upper band until all its available
states are filled. Then one will have to go to the third band, and so forth.

Figure 3.1: Schematic energy band for a metal

Suppose the chemical potential µ is chosen to be a value between −2t and
+2t. Then εk will be negative for some values of k and positive for others.
According to the rule of Fermi statistics, when the temperature is zero, the
negative-energy states are occupied and the positive energy states empty. Thus,
the total number of electrons occupying the ground state is given by

Ne = 2
∑

k

θ(−εk). (3.2)

The factor 2 arises from spin degeneracy. In the second-quantized language the
ground state is given by

|GS〉 =
∏

|k|<kf

∏
σ

c+
kσ|0〉. (3.3)

The Fermi momentum is the k-value which satisfies −2t cos kf − µ = 0. It is
the momentum value up to which electrons will be occupied in the ground state
at zero temperature. Due to the chemical potential, the highest-energy state
allowed for an electron is effectively zero. However, that’s exactly what the
chemical potential does; to effectively adjust the energy levels so that Fermi
statistics will select all the negative-energy states for occupation of electrons.

Now we can address the question that arises over and over again in solid
state physics:

What is the lowest-energy excited state allowed for this system?

Figure 3.2: Creating an excited state for a metallic ground state



3.1. METAL VS. INSULATOR 27

By an excited state we mean any states which are orthogonal to the ground
state. By definition such a state must have an energy higher than E0 which is
the energy of the ground state. For a ground state of the type (3.3) the first
excited state is obtained by taking an electron from just below the Fermi level
µ and placing it just above it. Taking kf = 2πnf/L, we can write down the
excited-state wave function

|EX〉 =
∏

−nf <n<nf−1

∏
n=nf +1

c+
k |0〉 = c+

nf +1cnf
|GS〉. (3.4)

(We momentarily ignore the fact that electrons carry spin.) The energy of the
excited state is

Eex = Egs + εnf +1 − εnf
. (3.5)

Remembering that the momentum difference between nf and nf + 1 states is
tiny, we can Taylor-expand the energy difference

εnf +1 − εnf
≈ 2t sin kf ×∆k = 2t sin kf × 2π

L
. (3.6)

Regardless of the exact value of sin kf this difference is ∼ t/L, which means
that it is going down as the system size L increases. Since L is taken to infinity
at the end of the day, the energy difference between |GS〉 and the first excited
state vanishes. Such a situation is known as “gapless”. A metal is an example
of a gapless state. The fact that a metal is a good conductor is a consequence of
the gapless nature of the ground state. It costs essentially zero energy to excite
one electronic state above the ground state, and the first excited state such as
the one given in Eq. (3.4) has a momentum

〈EX|P̂ |EX〉 = +
2π

L
. (3.7)

This means that the excited state is a current-carrying state, whereas the ground
state carries zero current 〈GS|P̂ |GS〉 = 0. A metal generates current that scales
with the applied voltage, no matter how small the voltage is. The number of
electrons “excited” by the applied voltage scales with V , and there are always
some electrons which can be excited within the energy window of V because
they are in a gapless state.

On the contrary, an insulator is a state for which the energy difference be-
tween the ground state and the first excited state is a finite number that does
not vanish no matter how large the system size gets. To understand where this
property of the insulator arises let’s first proceed to construct one.

Consider the Hamiltonian in one dimension

H = −t
∑

i

(c+
i+1ci + c+

i ci+1) +
∑

i

(∆i − µ)c+
i ci. (3.8)

Without ∆i this is the tight-binding model leading to the energy dispersion
−2t cos k − µ. For ∆i, we take the form

∆2i = +∆, ∆2i+1 = −∆. (3.9)
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All even sites have one kind of on-site energy, whereas all odd sites have the
opposite on-site energy. As a result, the translational symmetry is broken and
one can no longer use the trick to replace ci as (1/

√
L)

∑
k eiknick to diagonalize

H.
The symmetry, however, is not that badly broken. If we look only at the

even sites, once again the lattice looks translationally invariant. The same is
true of the sublattice consisting of odd sites. The trick can also be generalized
to apply the Fourier representation for each sublattice as

c2i =

√
2
L

∑

k

eik(2ani)ak

c2i+1 =

√
2
L

∑

k

eik(2ani+a)bk (3.10)

Here we temporarily re-introduce the lattice spacing a in the equation. Notice
that each of the above equations taken separately is just the Fourier repre-
sentation of the electron annihilation operators. Only now we have L/2 sites
corresponding to each sublattice, and the lattice spacing is 2a instead of a. Since
the two lattices are different, the Fourier operators are given different names,
ak and bk. Going through the same argument as before, we conclude that k is
quantized in multiples of 2π/L, which remains unchanged. Also note that k has
the same effect on the equation (3.10) as k + π/a. That means the Brillouin
zone is [−π/2a, π/2a]; half of what it was for a fully translationally invariant
lattice. This is of course consistent with the effective lattice spacing enlarged
to 2a in each sublattice.

Before we proceed with the diagonalization of the Hamiltonian, we point out
an important aspect of the reduction of the Brillouin zone. The spacing between
adjacent states in k-space is 2π/L, same as in symmetry-unbroken state, but the
size of the Brillouin zone is halved. That means that number of independent
states allowed in the Brillouin zone is also halved, and we can accommodate
only half as many electronic states as we used to when ∆ = 0! The resolution
of this paradox can be clearly seen once we diagonalize the Hamiltonian.

Figure 3.3: Band structure with a gap in an insulator

The Hamiltonian written in Fourier representation is

H = −2t
∑

k

cos k(a+
k bk + b+

k ak) + (∆− µ)
∑

k

a+
k ak − (∆ + µ)

∑

k

b+
k bk

=
∑

k

( a+
k b+

k )
(

∆− µ −2t cos k
−2t cos k −∆− µ

)(
ak

bk

)
(3.11)



3.1. METAL VS. INSULATOR 29

Diagonalizing the 2 × 2 Hamiltonian leads to the eigenvalue E±
k = −µ ±√

∆2 + (2t cos k)2. A single band−2t cos k−µ is split up into two non-overlapping
bands due to the presence of ∆. Plotting the two energy spectra E±

k immedi-
ately leads to the conclusion that the two bands are separated by an energy gap
equal to 2∆. The reduction of the Brillouin zone size by half is compensated by
the emergence of two bands, rather than one, after the gap opening has taken
place. The two bands over the reduced Brillouin zone accommodate the same
number of states as a single band over the full Brillouin zone in the ungapped
situation.

An interesting thing happens when µ is situated somewhere between −∆ and
+∆. Then, at zero temperature, all the states in the lower band are occupied,
and all states in the upper band are empty. In second-quantized language the
ground state is

|GS〉 =
∏

k

l+k |0〉 (3.12)

where l+k places an electron in each one of the E−
k state. The total number

of electrons in this state is L/2, equal to the number of distinct states in the
Brillouin zone discussed earlier. Including the spins, this would correspond to
one electron per site.

Now we raise the question: what is the second lowest energy state allowed
for half-filling with L/2 electrons? Since all the states in the lower band are
already occupied, the only thing one could do is to move an electron from the
lower band and elevate it to the upper band. It means that the first excited
state is given by

|EX〉 = u+
k0

lk0 |GS〉 (3.13)

where k0 = π/2 minimizes the upper band energy E+
k and maximizes the lower

band energy E−
k . In this way one can reduce the energy penalty in creating

the excited state as much as possible. Still, the energy costs remains at 2∆,
regardless of the exact size N .

Remember that when we had ∆ = 0, a half electron per site, ignoring the
spin, led to a metallic ground state because the chemical potential fell in the
middle of the energy spectra. With the same number of electrons, however,
the system is turned into an insulator when ∆ is non-zero. The real difference
caused by ∆ is that the unit cell is now enlarged to include two atomic sites; in
the new unit cell, there is one electron per unit cell site. This observation can
be generalized into an empirical rule:

Whenever there are integer number of electrons (ignoring the spin degener-
acy) in a unit cell, one has an insulator as the ground state. In all other cases,
one has a metallic ground state.

If this statement were true, one would be able to open up a gap and obtain
an insulator regardless of how we destroy the translational invariance. For in-
stance, instead of introducing the on-site energy ∆ that depends on site, one can
modulate the hopping amplitude t as t1, t2, t1 · · · . This will enlarge the unit cell
too. Indeed one can check that one also obtains a gap proportional to |t1 − t2|.
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3.2 Interfaces

We address the question what happens when two materials of different properties
are joined together at a sharply defined interface. In reality the interface is a
two-dimensional sheet which separates two half-infinite bulks each possessing
different gaps, or a metallic bulk adjoined by an insulating counterpart, etc.
Here we consider the simplified case of two one-dimensional systems joined at a
sharp interface, which is a single line separating two semi-infinite wires.

Figure 3.4: An interface separating materials of different bulk properties

For concreteness, take i = 1, · · · , N sites to belong to a system with “A”-
type properties and i = N + 1, · · · , 2N to a system with “B”-type properties.
Within each semi-infinite wire we have the Hamiltonian

HA = −t
∑

i,i+1∈A

(c+
i+1ci + c+

i ci+1) +
∑

i∈A

(∆A(−1)i − µA)c+
i ci

HB = −t
∑

i,i+1∈B

(c+
i+1ci + c+

i ci+1) +
∑

i∈B

(∆B(−1)i − µB)c+
i ci. (3.14)

Whether each segment is metallic or insulating depends on the exact location of
the chemical potentials µA and µB . If the chemical potential lies in the gapped
portion of the energy spectrum it is an insulator. If not, it is a metal.

When two such systems are joined together, one would still expect to observe
the same material properties as in the bulk far, far away from the interfacial
region. However, the properties at and nearby the junction may be substantially
modified. To see if this is really true, first consider the case of two insulators.

Here we have a half-filled insulator coupled to another half-filled insulator.
Since transferring charges from region A, at energy −∆A − µA, to region B, at
energy ∆B − µB , will cause the amount of energy transfer

∆E = (∆B − µB)− (−∆A − µA) = ∆A + ∆B + µA − µB (3.15)

which is a positive quantity, it is energetically prohibited to transfer any charges
from A to B, or for that matter, from B to A.

The situation is dramatically altered if one material is a metal, and the other
an insulator. Take the case where µA > ∆A, so that A is a metal. The B region
is still an insulator with µB ∈ [−∆B ,∆B ]. Now transferring an electron from
A, at the conduction band energy EA, to B, at ∆B − µB , costs an energy

∆E = (∆B − µB)− EA (3.16)
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and this expression can be of either sign. In fact when the bottom of the A
conduction band (which is partially filled) lies above that of the B conduction
band (which is empty), this quantity is guaranteed to be negative. Electron
transfer from A to B can further lower the total energy. The B side, upon
receiving electrons which fill up its own conduction band, becomes metallic. So,
both sides become metals, it seems. Naively one might think that the electron
flow would continue until the chemical potential on both sides were equal and
transfer of electrons no longer lower the energy.

Figure 3.5: Electron transfer in the metal-insulator interface.

This is however not so when you take into account the effects of Coulomb
interaction. If you transfer electrons from one side to the other, side A becomes
positively charged, and side B, negatively charged. Positive and negative charges
attract each other, forming bound states. That means electrons moving from
A to B become confined, over a depletion layer of width D. The width can be
calculated from elementary electrostatic considerations.

Suppose the excess charge density on either side is given by σ. The corre-
sponding electric field is E = σ, and the potential difference at z = ±D is given
by ∆V = 2Dσ. An electron on side A sitting at z = −D has an energy EA,
but the electron on side B sitting at z = +D has an energy ∆B − µB + 2Dσ. If
these two energies were equal, one could no longer transfer charges from A to
B. The condition defines the depletion width

D =
EA −∆B + µB

2σ
. (3.17)

The total charge transferred is equal to σ times the depletion width D, or
Q = (EA −∆B + µB)/2, which is only fixed by the energy level differences in
the original system.

3.3 Exercise

[1][40pts] Diagonalize the Hamiltonian

H = −
∑

i

ti(c+
i+1ci + c+

i ci+1)− µ
∑

i

c+
i ci (3.18)

where we have t2i = t0+t1 and t2i+1 = t0−t1. Show that there is a gap opening
proportional to t1.

[2][30pts] Diagonalize the Hamiltonian

H = −t
∑

i

∑

j∈i

c+
j ci +

∑

i

(∆i − µ)c+
i ci. (3.19)



32 CHAPTER 3. DESCRIPTION OF METALS AND INSULATORS

for two-dimensional square lattice. ∆i is assumed to change sign between neigh-
boring sites. j ∈ i represents all immediate neighbor sites with respect to i.



Chapter 4

Measurable quantities

This is an ambitious chapter with an intent to cover the theories underlying
some of the most routine experimental measurements of the solid state prop-
erties. There is a wide array of different measurements available to probe a
material and I will cover what seems like the most routine of them all: heat
capacity, electric/thermal conductivity, Hall coefficient, and magnetic suscepti-
bility. The beauty of doing solid state physics is a theory can be readily and
directly compared with the measurement being done by your neighbors down-
stairs. Ultimately all of physics have this interplay between experiment and
theory, but nowhere is it more routinely done than in solid state physics.

4.1 Heat capacity

Heat capacity is conceptually one of the simplest quantities one could measure
in the laboratories. A given state of matter comes with its own average energy
E(T ) that varies with the temperature. The derivative dE/dT refers to the
amount of energy(heat) that’s required to raise or lower the temperature by
a degree, and we call this the specific heat, or heat capacity. The theory for
specific heat therefore amounts to the theory for the average energy E.

4.1.1 Theory

In the free electron picture of a metal, the Fermi sea is the ground state with
all the k-states with the energy εk less than the Fermi energy Ef occupied by
electrons of both spin species. However, this statement is only strictly true at
T = 0. At finite temperature, each energy eigenstate Ek has a finite probability
of occupation dictated by the Fermi-Dirac factor

F (εk − µ) =
1

eβ[εk−µ] + 1
. (4.1)

The total number and total energy of the electrons are given by

33
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N =
∑

kσ

F (εk − µ)

E =
∑

kσ

εkF (εk). (4.2)

For simple metals, the spin degeneracy simply contributes a factor two to both
quantities.

The above expressions can be re-written as integral forms

N = 2V

∫
dDk

(2π)D
F (εk − µ)

E = 2V

∫
dDk

(2π)D
εkF (εk − µ) (4.3)

where D is the relevant spatial dimension. In turns out that in D = 2 this is
particularly simple to calculate:

N = 2V

∫ ∞

0

kdk

2π
F

(
~2k2

2m
− µ

)
= V

∫ ∞

0

( m

π~2

)
F (ε− µ)dε

E = V

∫ ∞

0

( m

π~2

)
εF (ε− µ)dε (4.4)

The reason why I kept the constant factor (m/π~2) inside the integrand, rather
than outside, is as follows. In arbitrary dimension D one can write down N and
E in the form

N = V

∫ ∞

0

D(ε)F (ε− µ)dε

E = V

∫ ∞

0

D(ε)εF (ε− µ)dε (4.5)

where D(ε) is the density of states, or DOS for short. By DOS we mean the
number of different states within a given energy window, or in differential form,
D(ε) = dN(ε)/dε, N(ε) being the total electron number filled up to energy ε.
For future reference I list the DOS in the free electron picture with D = 1, 2, 3.

D(ε) =
1√
ε

(D = 1)

=
m

π~2
(D = 2)

=
m

π2~2

√
2mε

~2
(D = 3) (4.6)

The results for one and two dimensions are relevant because the materials we
study in solid state laboratories are more and more of lower dimensionality
when compared to the materials studied in the past. The exact form of DOS
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will be changed as we discuss the realistic band structure and electron-electron,
electron-phonon interaction effects. However, the general expressions given in
Eq. (4.5) will remain unchanged, and that’s why we prefer to write N and E
in this form.

The heat capacity, or the specific heat, is defined as the increase in the
internal energy as the temperature is increased: C = dE/dT . According to Eq.
(4.5) it is given by

C =
∫ ∞

0

D(ε)ε
dF (ε− µ)

dT
dε. (4.7)

Since the energy ε−µ and the temperature T always enters as a combination (ε−
µ)/T in the Fermi function we can invoke the identity, applicable for arbitrary
function f((ε− µ)/T ):

(
(ε− µ)

d

dε
+ T

d

dT

)
f

(
ε− µ

T

)
= 0

to re-write

C =
∫ ∞

0

D(ε)
ε(ε− µ)

T

(
−∂F (ε− µ)

∂ε

)
dε. (4.8)

The quantity inside the bracket,

−∂F

∂ε
=

β/4
cosh2 [β(ε− µ)/2]

, (4.9)

is a rather sharply peaked function of ε, and integrating it over energies from
0 to ∞ gives −F (∞) + F (0) = 1. In other words, the quantity in the bracket
behaves a lot like a Dirac delta function whose peak is located at ε = µ.

Based on this peculiar property of the derivative of the Fermi-Dirac function
we can approximate Eq. (4.8) as

C =
∫ ∞

−µ

D(ε)
ε(ε + µ)

T

β/4
cosh2 [βε/2]

dε ≈ D(µ)
4T 2

∫ ∞

−∞

ε2

cosh2 [βε/2]
dε

= 2D(µ)T ×
∫ ∞

−∞

x2

cosh2 x
dx ∝ D(µ)T. (4.10)

The final analysis reveals that the electronic specific heat is proportional to
temperature and the density of states at the Fermi level, D(µ). The exact
proportionality constant depends on the way we model the electron spectrum
and the level of approximations involved in calculating the density of states, but
the basic relation C ∝ D(µ)T remains valid for metallic systems. In research
papers one sometimes see the heat capacity expressed as C/T in an attempt
to extract the material’s DOS at low temperature. This, and the paramagnetic
susceptibility to be discussed later, are two popular ways to determine the DOS
at the Fermi level for metallic systems.

In contrast, the specific heat of an insulator shows a very different behavior.
For instance, consider an insulator which has a gap equal to ∆ between the
highest occupied energy level and the lowest unoccupied one. The fraction of
the electrons sitting in the level above the energy gap is Nc/N = F (∆ − µ).



36 CHAPTER 4. MEASURABLE QUANTITIES

Similarly, the fraction of the electrons that has been removed from the top of
the valence band is Nv/N = 1 − F (−µ). Because of the number conservation
the two quantities must match,

F (∆− µ) = 1− F (−µ). (4.11)

This will be true if µ = ∆/2, because of the identity F (x) + F (−x) = 1 of the
Fermi-Dirac function.

Having fixed the chemical potential for arbitrary temperature T , we can
calculate the energy change due to the thermal population of the conduction
band:

∆E = Nc
∆
2
−Nv

(
−∆

2

)
= (Nc + Nv)

∆
2

= ∆× F

(
∆
2

)
. (4.12)

The specific heat is just the derivative of this quantity with respect to temper-
ature,

Ce =
1
2

(
∆
T

)2 1
4 cosh2[∆/4T ]

. (4.13)

A plot of this quantity quickly reveals that its behavior is very different from
that of a metal.

• It is exponentially suppressed at temperatures much less than the gap,
T ¿ ∆.

• It reaches a maximum at T ∼ ∆.

• It falls off exponentially for T À ∆.

Inversely speaking, when one measures a behavior of this type, one can con-
clude that it possesses a gap, and the gap value can be extracted by fitting the
measured temperature dependence to a formula like (4.13).

4.1.2 How we measure

These days a simple heat capacity measurement is carried out on a routine basis
in the MPMS machines made by Quantum Design, Inc. In both metals and in-
sulators one has the phonons involved in the dynamics and making a significant
contribution to the specific heat. What one has to do in reality is to measure
the total value, C = Ce +Cph and somehow subtract off the phonon part Cph in
order to isolate the electronic portion of the specific heat. I leave it as a home-
work exercise for the students to learn how the “phonon subtraction” is done in
laboratories. It will be an excellent opportunity for some of the students to go
over the principles behind the measurement techniques they are accustomed to.
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4.2 Electrical and thermal conductivity

When we synthesize a new material, the first question one asks is “Is it a metal,
an insulator, or a superconductor”. The question is directly answered by mea-
suring the conductivity.

4.2.1 Theory

In this section we discuss the electrical and thermal conductivity of electrons
in a metal in terms of the Drude theory1 The full-blown quantum-mechanical
theories are in the realm of the many-body theory and outside the scope of this
lecture. The Drude model treats each electron as a classical particle subject
to the influence of electric and magnetic fields in a solid according to Newton’s
law,

m
dv
dt

= −e (E + v ×B)−m
v
τ

, (4.14)

where τ is the relaxation time. Various things contribute to the relaxation
processes of the electron including electron-electron scattering, electron-phonon
scattering, and scattering off impurities. Our treatment here is phenomenolog-
ical. In the presence of a constant electric field E0 and zero magnetic field, the
initial velocity v0 develops into

v(t) = −eτ

m
E0 +

(
v0 +

eτ

m
E0

)
e−t/τ . (4.15)

Over the time τ the electron will have “relaxed” into a constant velocity given
by

v = −eτ

m
E0. (4.16)

When the density of electrons is n, the current density j in response to E0 is

j = −nev =
ne2τ

m
E0. (4.17)

The electrical conductivity is the ratio of the current density divided by the
electric field, σ = ne2τ/m. Measurements are often reported in resistivity ρ,
the inverse of conductivity. Using the reported value of ρ and density n for
typical metals the relaxation time can be worked out using the formula above.
It is typically in the vicinity of 10−14s.

Thermal conductivity is similar to the electrical conductivity. It measures
the amount of internal energy transferred from one side of the system to the
other in the presence of temperature gradient ∇T across it. The electrical con-
ductivity, in contarst, measures the amount of charge transferred in the presence
of the potential gradient ∇φ. The derivation of the thermal conductivity, also
due to Drude (1900), is as follows.

Consider the amount of energy current passing through x when the temper-
ature gradient dT/dx is present along the x-direction. Roughly n/2 electrons

1J.J. Thompson confirmed the existence of a negatively charged particle called thee “elec-
tron” in 1896. Drude made his theory of electron conduction shortly afterward. His theory
has a close resemblance to the kinetic theory of gases developed some decades earlier.



38 CHAPTER 4. MEASURABLE QUANTITIES

from x + vτ has travelled to the left and arrived at x in time τ , each electron
carrying the energy ε(x+vxτ). Another n/2 electrons from x−vτ has travelled
the same distance, arrived at x, over the time τ carrying the energy ε(x− vxτ).
The energy current is given by

jε =
n

2
vx[ε(x− vxτ)− ε(x + vxτ)] ≈ −nv2

xτ
dε

dx
= −nv2

xτ
dε

dT

dT

dx
. (4.18)

Since there are many electrons traveling inside the metal, the quantities ap-
pearing in this equation should be regarded as thermal averages. From classical
statistical mechanics we know that 〈v2

x〉 = (2/m)(kBT/2) = kBT/m. Moreover,
dε/dT is the specific heat of the electrons which in classical statistical mechanics
equal (3/2)kB . Putting the results together,

jε = −nτ
kBT

m

3
2
kB × dT

dx
= −3nτ

2m
k2

BT × dT

dx
. (4.19)

The thermal conductivity is the ratio κ = |jε/(dT/dx)| = (3nτ/2m)k2
BT . An

interesting ratio is formed between this quantity and σT :

κ

σT
=

(3nτ/2m)k2
BT

(ne2τ/m)T
=

3
2

(
kB

e

)2

. (4.20)

The ratio, known as the Lorenz (not Lorentz) number, is a surprising combina-
tion of two fundamental constants of nature, independent of the materials being
looked at. Indeed the universality of this ratio is obeyed in a large number of
metals and is known as the Wiedemann-Franz law after the original discoverers
of the phenomenon (1853). The Lorenz number for a wide selection of metals
is quoted in Kittel, p. 168 [7th Ed.].

4.2.2 How we measure

Electrical conductivity is quite simple to measure. I need a student presentation
on how a typical metal’s resistivity behaves when temperature is lowered and
compare it to the typical behavior of an insulator and superconductor. Real
measurement data need to be presented. It will be nice to add the resistivity
data on a fourth kind of material, namely the one-dimensional material such as
nanotubes. Thermal conductivity data for these four classes of materials need
to be presented also.

4.3 Hall effect

4.3.1 Theory

Before we discuss Hall effect, we will start with a general consideration of how an
electron motion is modified when a magnetic field is turned on. The spin orien-
tation along and against the applied field direction is responsible for the energy
splitting known as the Zeeman splitting. The quantum mechanical Hamiltonian
giving rise to the Zeeman effect is given by
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HZ =
µB

~
gsS ·B (4.21)

where µB = 5.8×10−5eV/T is the Bohr magneton, gs is the gyromagnetic ratio
which for electrons is 2. The spin quantum number Sz takes on ±~/2 along the
B direction. The amount of energy level splitting under a 10T magnetic field is
5.8×10−5×2×10 eV ≈ 1 meV and that’s a tiny fraction of the Fermi energy of
typical metals. This tiny difference shows up as the paramagnetic susceptibility
which we will discuss in the next section.

The trajectory of the electron on the other hand is governed by the classical
equation as

m

(
d

dt
+

1
τ

)
v = −e (E + v ×B) . (4.22)

Following Edwin Hall’s original experimental setup, we apply the electric field
along x̂ direction and the magnetic field along ẑ for a flat strip of metal extended
in the x − y directions. In a steady-state situation the time derivative is zero,
and we obtain

v +
τe

m
(Ex̂ + Bv × ẑ) = 0

vx +
τe

m
(E + Bvy) = 0

vy +
τe

m
(−Bvx) = 0. (4.23)

Solving the last equation gives vy = (τeB/m)vx. Although electric field is
along the x̂ direction, there is electron motion perpendicular to it, along the ŷ
direction, due to the magnetic field. Working out some algebra, one finds that
the current density in the electric field direction is given by

Jx =
σ0

1 + (ωcτ)2
Ex (4.24)

where ωc = eB/m is the cyclotron frequency, and σ0 = ne2τ/m is the dc
electrical resistivity. There is a little less current along the applied potential
gradient if there is a magnetic field present. Where did the missing current go?
- It went the y-way, of course. The current along the y-direction can be worked
out:

Jy = ωcτJx = σ0
ωcτ

1 + (ωcτ)2
Ex. (4.25)

The net current divided by the electric field is
√

J2
x + J2

y/Ex = σ0/
√

1 + (ω0τ)2,
and it’s less than what’s possible without the magnetic field. The magnetic
field thus affects the electrical resistivity. The phenomenon of the dependence
of the electrical conductivity on the applied magnetic field is known as the
magnetoresistance.

The angle θ which the current vector makes with the electric field is set by
tan θ = ωcτ . This quantity is not necessarily small; if the magnetic field is very
strong and the relaxation time is very large, we can have ωcτ À 1. Then most of
the current actually flows orthogonal to the electric field’s direction. Similar to
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the longitudinal conductivity σxx ≡ Jx/Ex, we can define the Hall conductivity
σxy given by

σxy =
Jy

Ex
=

σ0ωcτ

1 + (ωcτ)2
∼ σ0

ωcτ
=

ne

B
. (4.26)

The Hall coefficient RH is related to σxy by RH = 1/(Bσxy) = 1/ne in the clean
limit.

4.3.2 How we measure

Hall effect is a popular way to characterize the carrier types in semiconductors.
It is used extensively in the study of metallic or semi-conducting magnets. In
quantum Hall systems the transverse conductivity σxy is quantized at certain
discrete multiples of e2/h, h being the Planck’s constant. It will be nice to know
how the Hall coefficient RH or transverse conductivity σxy is actually measured.

4.4 Magnetic susceptibility

4.4.1 Theory

Electron spins are responsible for the magnetism in solids. Even for non-
magnetic systems for which the population of up and down spins are equal,
one can tip the balance by applying a magnetic field which would tend to pro-
duce more electrons having spins along the field’s direction than counter to it.
A complete alignment of spin direction along the field direction is hampered
by thermal fluctuation in the case of localized spins, and by Pauli principle
for electrons in a metal. The degree of spin polarization is expressed by the
magnetization

M = µB(n↑ − n↓) (4.27)

which is proportional to the difference of up- and down-spin electron densities.
For non-magnetic systems M rises in proportional to the applied field strength,
and the ratio M/B is known as the magnetic susceptibility, χ. We will evaluate
the magnetization for localized spins and derive the Curie’s law of susceptibility,
and for conduction spins and derive the Pauli susceptibility.

Curie’s law : Consider a collection of localized spins with the spin S2 =
S(S + 1). The spin-1/2 case is the simplest to consider and we will start with
this. When subject to a magnetic field, the energy levels of the two spin states
are split into ±µBB. The population of each spin state at temperature T is
dictated by the Boltzmann’s law:

n↑ =
eβµB

eβµB + e−βµB

n↓ =
e−βµB

eβµB + e−βµB
. (4.28)

The magnetic moment per spin is given by the difference,
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M = µ tanh (βµB) . (4.29)

As I mentioned before, a 10T field induces the Zeeman splitting µB ≈ 1 meV
≈ 10 K. At room temperature, the argument of the tanh function is a small
number and we can expand the r.h.s. to first order to get

M ≈ µ2B

kT
, χ =

µ2

kBT
. (4.30)

The plot of 1/χ vs. temperature yields a straight line with the slope dictated
by µ2.

Due to the Hund coupling, magnetic ions in real compounds often behave as
if their effective spin number was larger than 1/2. The Hamiltonian responsible
for the Zeeman splitting is HZ = −gµSzB with Sz = −S,−S + 1, · · · , S − 1, S.
For general S, one can derive the magnetization

M =
S∑

m=−S

mP (m), P (m) =
e−βgµmB

∑S
m=−S e−βgµmB

. (4.31)

The sum over 2S + 1 states can be carried out straightforwardly and the mag-
netization yields a function known as the Brillouin function given by

B(x) =
2S + 1

2S
coth

(
2S + 1

2S
x

)
− 1

2S
coth

( x

2J

)
, (4.32)

where x ≡ gSµB/kT . For small x, we have the susceptibility

M

B
≈ S(S + 1)g2µ2

3kT
. (4.33)

By plotting 1/χ vs T we can read off the slope and the effective spin S of the
compound under scrutiny.

Pauli Paramagnetism: For localized electrons Pauli principle did not play a
role because different spins occupied different spatial locations anyway. That’s
why a small magnetic field is able to completely align all the spins in the zero
temperature limit for the localized magnets. This is not the case with the
itinerant electrons, where the Pauli principle forbids the complete alignment of
all the spins even at T = 0.

For simplicity we use the free electron result for the kinetic energy of the
electrons. Before the magnetic field is on, both spin states of the electrons have
the energy εk = ~2k2/2m. The magnetic field splits the energy according to the
spin orientation, so that one gets

ε+k =
~2k2

2m
− µB, ε−k =

~2k2

2m
+ µB. (4.34)

But still both spin states are filled up to the same Fermi energy Ef . That means
k+

f and k−f are also different, according to

(~k±)2

2m
∓ µB = Ef . (4.35)
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Accordingly there is more up-spin than down-spin electrons, and the difference
is evaluated as

N↑ −N↓ =
∫ Ef

−µB

D(ε + µB)dε−
∫ Ef

µB

D(ε− µB)dε

=
∫ Ef +µB

0

D(ε)dε−
∫ Ef−µB

0

D(ε)dε =
∫ Ef +µB

Ef−µB

D(ε)dε

≈ 2µBD(Ef ). (4.36)

The magnetization and susceptibility follow as

M = 2µ2D(Ef )B, χ = 2µ2D(Ef ). (4.37)

For non-interacting electrons the density of states at the Fermi level is D(Ef ) =
3N/4Ef , and χ = 3µ2/2kBEf . Various interaction and impurity effects mod-
ify the exact expression for the density of states but the proportionality of χ to
the Fermi level DOS survives many theoretical modifications. By measuring the
susceptibility of a metal, one often gets a good idea of the DOS of the particular
material. Heat capacity C/T and the Pauli susceptibility χ are both used to
probe the Fermi-level DOS of metals.

4.4.2 How we measure

How one measures the Pauli susceptibility of a metal is an interesting topic about
which I know little. A student presentation on early measurement data will be
highly welcome. Same goes for the Curie susceptibility of some typical magnets.

4.5 Diamagnetism

If the paramagnetic response in a solid is due to the electron spins, the diamag-
netic response under the external B field is due to the electron’s orbital motion.
When an electron is orbiting around a nucleus (which is a fair assumption in
some ionic crystals and noble gases) and an external magnetic field is set up, the
electrons will have its motion perturbed in such a way that extra flux opposing
the external one will be set up. This is just Lenz’s law for the electrons in an
atom.

A theorem due to Larmor states that if an electron circled around a nucleus
with frequency ω0, the external field B will produce a change in this frequency
given by

ωL =
eB

2m
. (4.38)

Note that this is half the cyclotron frequency. For such a shift in the frequency,
the extra current produced can be calculated as

∆I = (−Ze)
(

1
2π

eB

2m

)
. (4.39)
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The magnetic moment produced by the extra current loop is given by the current
times the area of the loop, given by the average of π(x2+y2). Thus the magnetic
moment induced by the B field is

M = −Ze2B

4m
〈r2〉. (4.40)

The magnetic susceptibility is obtained as χ = M/B. The electron distribution
〈r2〉 can be calculated for each atom. This kind of diamagnetic response of
electronic orbitals is known as the Larmor (or Langevin) diamagnetism.

If the Larmor/Langevin diamagnetism is due to the electrons confined around
a nucleus and is essentially a manifestation of Lenz’ law, Landau diamagnetism
comes from the free electrons which form the Fermi surface. When a magnetic
field is applied along the z direction, the associated vector potential in the linear
gauge reads A = B(0, x, 0), and the Hamiltonian of the electron is modified to

H =
1

2m
(p− eA)2. (4.41)

The eigenstates of this Hamiltonian form the new energy levels which the elec-
trons occupy from the lowest up. The total energy of the N electron system will
be dependent on the applied field B: E = E(B). Using the laws of thermody-
namics one can calculate the magnetic moment and the magnetic susceptibility
as the first and the second derivatives of the total energy according to

M = −∂E

∂B
, χ = −∂2E

∂B2
. (4.42)

By calculating E(B) one can calculate χ for a collection of free electrons. It
turns out that this response is diamagnetic, and has the magnitude one third
that of Pauli paramagnetic susceptibility.

4.6 Exercise

[1][10pts] Derive the density of states D(ε) in one and three dimensional metals.

[2][10pts] Use the equation m(dv/dt+v/τ) = −eE for the electron drift velocity
v to show that the conductivity at frequency ω (i.e. E(t) = E0e

−iωt) is

σ(ω) =
ne2τ

m

1
1− iωτ

. (4.43)

[3][50pts] Answer one of the following questions based on your own experience
in the laboratory. If you are a theory student it will be a nice opportunity to
learn about how an actual measurement is being done by your friends in the
basement. There will be a student presentation on each one of the measurement
techniques as well. Discuss the general measurement scheme and an explicit case
of the type of measurement you are describing. I tend to put heavy emphasis
on this type of exercise so give it your best shot! I will do the grading for this
problem.
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• How do we measure heat capacity in the laboratory? How do we make a
phonon subtraction?

• How do we measure thermal and electrical conductivity in the laboratory?

• How is the Hall conductance/conductivity measured in various devices
including semiconductors, quantum Hall devices, and diluted magnetic
semiconductors?

• How do we measure the magnetic susceptibility of insulators with localized
spins and metals with itinerant spins?

[3][Kittel, Chap. 14, Prob. 3][20pts] Some organic molecules have a triplet
(S=1) excited state at an energy kB∆ above a singlet (S=0) ground state. (a)
Find an expression for the magnetic moment M in a field B. (b) Find an ex-
pression for the heat capacity.

[4][Kittel, Chap. 14, Prob. 4][20pts] Consider a two-level system with an energy
splitting kB∆ between upper and lower states; the splitting may arise from a a
magnetic field or in other ways. Show that the heat capacity per system is

C =
(

∂U

∂T

)

∆

= kB
(∆/T )2e∆/T

(1 + e∆/T )2
. (4.44)

Plot of this function shows a pronounced peak at T ≈ ∆. Peaks of this type in
the heat capacity are often known as Schottky anomalies.

[5][20pts] Derive Brillouin function of the magnetization for spin-S.



Chapter 5

Landau level problem

Here we show how to solve the problem of an electron moving in a two-dimensional
plane subject to a constant, perpendicular magnetic field. The relevant Hamil-
tonian is

1
2m

(p− eA)2ψ = Eψ. (5.1)

5.1 Landau gauge

In the Landau gauge we choose A = B(0, x).

1
2m

(px)2ψ +
1

2m
(py − eBx)2ψ = Eψ. (5.2)

A plane-wave solution is assumed for the y-dependence, ψ = eikyφ. The x-
dependent φ obeys

− 1
2m

∂2
xφ +

1
2m

(k − eBx)2φ = Eψ. (5.3)

It is convenient to introduce the magnetic length lB =
√
~/eB, xk = x− kl2B ,

−l2B∂2
xφ +

(
xk

lB

)2

φ = 2mEl2Bψ. (5.4)

The whole equation can be cast in the dimensionless form by re-definition
xk/lB → xk, 2mEl2B = E:

−∂2
xφ + x2

kφ = [(xk − ∂x)(xk + ∂x) + 1]ψ = Eψ. (5.5)

We can define a = (xk + ∂x)/
√

2 and a† = (xk − ∂x)/
√

2 as annihilation and
creation operators, [a, a†] = 1. We arrive at the familiar form

45
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[2a†a + 1]φ = Eφ, (5.6)

with the eigenstates |n〉 = (a†)n|0〉/
√

n!. |0〉 is the Gaussian function satisfying

(xk + ∂x)φ0 = 0 → φ0 = e−x2
k/2. (5.7)

5.2 Symmetric gauge

In the symmetric gauge we choose A = B(−y, x)/2. Before we insert this ex-
pression into the Schrödinger equation, we first introduce a new pair of operators

Πx = px − eAx, Πy = px − eAy, (5.8)

and Π± = Πx ± iΠy. Then

1
2m

(Π2
x + Π2

y) =
1

2m
(Π−Π+ − i[Πx,Πy]) =

1
2m

(Π−Π+ + eB). (5.9)

Employing the complex coordinates z = x + iy and its conjugate z = x − iy,
and their derivatives ∂z = (∂x − i∂y)/2, ∂z = (∂x + i∂y)/2,

Π+ = −i(∂x + i∂y)− eBi

2
(x + iy) = −2i∂z − eBi

2
z

Π− = −i(∂x − i∂y) +
eBi

2
(x− iy) = −2i∂z +

eBi

2
z. (5.10)

As in the Landau gauge problem we introduce the magnetic length lB =
√
~/eB

and define dimensionless variables z/(2lB) → z, etc. The Hamiltonian becomes

(
[z − ∂z][z + ∂z] + 1

)
ψ = Eψ (5.11)

Here a and a† are defined by

a =
1√
2

(z + ∂z) , a† =
1√
2

(z − ∂z) , (5.12)

[a, a†] = 1. Once again the Hamiltonian becomes

[2a†a + 1]φ = Eφ, (5.13)

with the eigenstates |n〉 = (a†)n|0〉/
√

n!. |0〉 is the Gaussian function satisfying

(z + ∂z)φ0 = 0 → φ0 = zme−zz. (5.14)

Here m is an arbitrary integer, playing the role of an angular momentum.



Chapter 6

Phonon Dynamics

A solid is a solid because the positive ions stay together despite their huge
Coulomb repulsion, because the attraction with the surrounding electrons is
just enough to overcome the ion-ion repulsion. The ions maintain a certain
distance because that’s when the total energy of the solid becomes the lowest.
At T = 0 the solid under consideration exists as the quantum-mechanical ground
state for the Hamiltonian which defines it.

When the temperature is raised to a finite value, it is not only the ground
state that’s realized, but a lot of other low-energy excitations which lie within
the range of the thermal energy T . To understand the properties of a solid,
it is essential to know the whole set of allowed low-energy excitations as well.
Among these, we want to focus on the low-energy dynamics of the ions - the
phonons.

At T = 0 the ions maintain a strict distance corresponding to the minimum
of the total energy. That means that if the ionic separation were a little greater
or a little less than this optimal value, one would see the increase of the total
energy. Write the displacement vector of each ion from its optimal position by
ui, where i indicates each ionic position in equilibrium. It is sensible to assume
that the total energy depends on this displacement vector as E({ui − uj}) for
all pairs of ions at i and j. It is a function of the difference only, because moving
the two ions together preserves the relative distance.

Further-neighbor ions are less tightly coupled than the nearest-neighbor pair,
and the simplest model for the dependence of the total energy on the ionic sites
is achieved if we assume that it depends on the relative positions of the nearest-
neighbor ions only. Assuming further that the displacements are a small fraction
of the average spacing, one can expand the total energy in small displacement
as

E ≈ E0 +
K

2

∑

〈ij〉
(ui − uj)2. (6.1)

A quantum theory of the lattice dynamics would start from a Hamiltonian such
as

H =
∑

i

p2
i

2m
+

K

2

∑

〈ij〉
(ui − uj)2, (6.2)

47
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with the commutation relations [piα, ujβ ] = −i~δijδαβ . It is possible to work
out the solution of the Hamiltonian (6.2) exactly, because the interaction is har-
monic. It helps greatly to understand the classical version of the problem first
because much of the classical solution carries over to the quantum case and the
classical problem is slightly simpler to treat.

6.1 Classical view of phonon dynamics

As a way to build up our technical ability, it is advisable to consider the one-
dimensional problem first. That is, we consider the case of a linear chain of
identical mass m, each coupled to its neighboring mass to the left and right
by the spring of stiffness k. The force exerted on the i-th mass is given by
k(xi+1 − xi) + k(xi−1 − xi) = k(xi+1 + xi−1 − 2xi). Equation of motion of the
i-th mass is thus

m
d2xi

dt2
= k(xi+1 + xi−1 − 2xi). (6.3)

Adopting the solution xi(t) = Aie
−iωt, the matrix equation obtained for Ai’s is

−mω2Ai = k(Ai+1 + Ai−1 − 2Ai) (i = 1, · · · , N) (6.4)

where we make the association AN+1 = A1 and A0 = AN (periodic boundary
condition).

This problem has an exact solution given by Ai = A0e
ikni where ni is an

integer taking on the value i for each site i. To check that this is the correct
solution, first substitute it into the equation, and one will find

−mω2Ai = k(eik + e−ik − 2)Ai = −2k(1− cos k)Ai

ω2 =
k

m

(
2 cos

k

2

)2

. (6.5)

So we obtained that the eigenfrequency ω is equal to 2ω0 cos(k/2). But this is
not yet good, unless we know what the k value is. To learn how to determine
k, go back to the assignment Ai = eikni . We assumed that AN+1 = A1, and in
order to meet this requirement we must also assume that eikN = 1. A discrete
set of k values are obtained from this condition, and thus a discrete set of ωn.

k =
2πn

N
, ωn = 2ω0 cos

(πn

N

)
. (6.6)

Counting how many different eigenfrequencies are possible, one finds there are
N distinct ωn’s in the problem, the same as the number of masses on a string.
And that’s the right result.

The eigenfrequency spectrum we obtain through this simple exercise is in fact
the exact eigenenergy spectrum of the corresponding quantum problem. The
eigenenergy is the frequency ωk multiplied by Planck’s constant, ~ωk. With the
neutron scattering one can measure the energy and momentum relation of the
phonons. For realistic solids the phonon dynamics is much more complicated
than the simple formula ωk indicates. Among other reasons, this is due to the
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fact that there exists more than one sort of ion per unit cell in real materials.
The complications brought about by multiple ions in a unit cell is illustrated by
the following simple example.

Take the one-dimensional chain of ions again, but this time a pair of adja-
cent ions stay closer than between the pairs. The spring constant is similarly
modified. For convenience label the left portion of the pair by an odd site 2i+1,
and the right portion by an even site, 2i. The dynamics of an odd site is given
by

m
d2x2i+1

dt2
= K(x2i+2 − x2i+1) + k(x2i − x2i+1). (6.7)

There are two spring constants K and k corresponding to a shorter bond and a
longer one. The dynamics of an even site is given by

m
d2x2i

dt2
= k(x2i+1 − x2i) + K(x2i−1 − x2i). (6.8)

The chain consists of N pairs of ions, and the periodic boundary condition
is xi+2N = xi. Looking at the even sites alone, it appears that all ions are
identical. The same is true of all the odd sites. Therefore, one can try out the
same type of solution

x2i = A exp (ik[2ni]− iωt)
x2i+1 = B exp (ik[2ni + 1]− iωt) (6.9)

In general there is no reason to expect A = B because the even and odd ions
are, after all, not identical. Inserting these trial solutions into the equation (6.7)
and (6.8),

−mω2A = k(eikB −A) + K(Be−ik −A)
−mω2B = K(eikA−B) + k(e−ikA−B) (6.10)

After a little re-arrangement we get

(
k + K −mω2 −keik −Ke−ik

−Keik − ke−ik k + K −mω2

)(
A
B

)
= 0 (6.11)

The characteristic equation, (mω2−k−K)2− (k2 +K2 +2kK cos 2k) = 0 offers
two solution

mω2 = k + K ±
√

k2 + K2 + 2kK cos 2k. (6.12)
After solving a challenging problem such as this one has to do a little sanity
check. For k = K one has to recover the prior solution, so let’s see if this is the
case. With k = K, Eq. (6.12) reduces to

mω2 = 2K ±
√

2K2(1 + cos 2k) = 2K(1± | cos k|). (6.13)
In the previous case we obtain mω2 = 2K(1− cos k).

Here the separation of a single energy spectrum into two branches is artificial.
But for the diatomic model the separation is real, and one can really observe
two independent branches of phonons per each k known as acoustic(lower) and
optical(higher) branches.
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6.2 Quantum view of phonon dynamics

In the previous section, we mentioned that the quantum counterpart of the
classical phonon dynamics is also exactly solvable, giving rise to the identical
energy spectrum. This implies that the quantum Hamiltonian, Eq. (6.2), once
properly diagonalized, will be reduced to the form

H =
∑

k

~ωka+
k ak (6.14)

where a+
k and ak are the creation and annihilation operators for the phonon

mode of momentum k. What lies between this result and the classical result is
the introduction of annihilation and creation operators (K ≡ mω2

0)

ai =
√

mω0

2~

(
xi +

ipi

mω0

)

a+
i =

√
mω0

2~

(
xi − ipi

mω0

)
. (6.15)

Insert these into the 1D Hamiltonian H =
∑

i(p
2
i /2m) + (K/2)

∑
i(xi+1 − xi)2

and use the Fourier representation

ai =
1√
N

∑

k

akeikri , (6.16)

one indeed recovers Eq. (6.14). The derivation is left as an exercise.
Now that we have a diagonalized Hamiltonian (6.14) for the phonon dy-

namics, what are the physical implications of the energy spectrum thus worked
out? In a sense, it is the specific heat which offers the most straightforward
answer because it is the easiest quantity to calculate. The specific heat is just
the derivative of the total energy U with respect to temperature, so it is needed
to work out the average energy U = 〈H〉 at a given T .

The phonons are bosons because the operators involved in diagonalizing the
phonon Hamiltonian obey bosonic commutation relations, [ai, a

+
j ] = δij . As a

consequence, the boson occupation number 〈a+
k ak〉 must obey the Bose-Einstein

distribution (~ ≡ 1)

〈a+
k ak〉 = Bk =

1
eβωk − 1

. (6.17)

The internal energy is given by

U =
∑

k

ωk

eβωk − 1
. (6.18)

The Bose-Einstein distribution rises rapidly for lower energy. Because of the
mathematical structure of the Bose-Einstein function, the low energy phonons
make much more important contributions in the specific heat than the high
energy phonons. As a simplification, one can disregard the optical branch and
consider only the acoustic branch, and in particular its k → 0 portion which is
approximated by ωk ≈ ck. Then the internal energy becomes
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U =
∑

k

ck

eβck − 1
= V

∫
d3k

(2π)3
ck

eβck − 1
= V

T 4

c3

∫
d3x

(2π)3
x

ex − 1
. (6.19)

It follows that the specific heat has a temperature dependence C(T ) ∼ T 3,
which is a prediction explicitly checked by experiments.

The T 3 dependence of the specific heat, often known as the Debye T 3 law,
holds in the low-temperature region where only the low-energy phonon exci-
tations make a substantial contribution to the specific heat. It is observed in
insulators where the electronic specific contribution is absent due to the energy
gap. The deviation from T 3 behavior occurs at higher temperatures.

To see how the deviation from T 3 dependence occurs, first re-write the
phonon internal energy in the form

U =
∫ ∞

0

g(ω)
ω

eβω − 1
dω. (6.20)

The factor g(ω) is the phonon density of states. For a linear energy spectrum
g(ω) = 3V ω2/(2π2c3) in three dimensions. However, there can be only as many
phonon modes as there are atomic sites. In 3D, the number of phonon modes
are constrained to be Nph = 3N . The density of states is thus required to obey∫∞
0

g(ω)dω = 3N , and Debye assumed that g(ω) behaves as ω2 all the way to
some cut-off frequency ωD:

∫ ωD

0

g(ω)dω = 3N → ωD = (6π2n)1/3c. (6.21)

The heat capacity is now obtained from the formula

C = 9N

(
T

TD

)3 ∫ TD/T

0

x4exdx

(ex − 1)2
. (6.22)

The Debye temperature is defined by kBTD = ~ωD. At high temperature C
reduces to 3N , and at low temperature one recovers T 3 behavior. The interpola-
tion between the low-temperature T 3 behavior to the high-temperature classical
specific heat is known as the Debye interpolation scheme.

6.3 Debye-Waller Broadening

When Laue decided to shoot down an X-ray on a crystal and observe what
comes out, there was an argument as to whether the thermal agitation of the
ions would completely wash out any observable effects. In fact there was a
diffraction pattern observed, at the locations expected for a perfect regular array.
The thermal agitation of ions does have some other observable consequences,
which was clarified by Debye.

The deviation of a ion at site i is denoted xi (assuming one dimension0 and
the potential energy for the deviation is (K/2)x2

i . Only the optical branch of the
vibration is considered for simplicity. Using the relation xi = (~/2mω0)1/2(ai +
a+

i ), the average of the squared deviation reads
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〈x2
i 〉 =

~
2mω0

〈aia
+
i + a+

i ai〉 =
~

mω0

(
B(ω0) +

1
2

)
. (6.23)

In the theory of X-ray scattering, the intensity of the diffraction pattern can be
shown to be “weakened” by the factor e−α〈x2

i 〉 compared to its purely classical
value, where α is a numerical factor of order unity. One has the result

I

Icl
= exp

(
− α~

mω0

(
B(ω0) +

1
2

))
→ exp

(
− α~

2mω0

)

→ exp
(
−αT

K

)
(6.24)

in the extremely quantum and classical limits, respectively. The thermal and
quantum effects do reduce the scattering intensity, but not catastrophically.

6.4 Exercise

[1][20pts] Discuss how the neutron scattering probe can measure the phonon
dynamics.

[2][10pts] Derive Eq. (6.14) from Eq. (6.2).

[3][20pts] Derive the phonon density of states for the dispersion relation Eq.
(6.6) of a monatomic chain with nearest-neighbor interaction.

[4][20pts] Calculate the specific heat of the phonons in a layered two-dimensional
lattice with the spring constant K along the x-direction, but k along the y-
direction with K À k. Show that in the extremely low temperature limit the
phonon specific heat behaves as ∼ T rather than ∼ T 2 as expected in 2D solids.
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Ordering in solids

7.1 Magnetism

In the previous chapters we have examined some properties of metals and insu-
lators. Implicitly we treated both spin species to have the same energy so that
the ground state is necessarily non-magnetic. On the other hand there is a wide
array of compounds for which the ground state possesses macroscopic magnetic
moments. While the details of the mechanism responsible for the magnetism is
outside of the scope of this lecture, the Hamiltonian responsible for magnetic
ordering usually takes the form

H =
∑

〈ij〉
JijSi · Sj . (7.1)

Each spin Si are spin S=1/2 operators. However it is often a good approxima-
tion to consider these as classical spins, of fixed magnitude |Si| = S. Often the
magnitude S is absorbed in the definition of Jij and the rotational degrees of
freedom is expressed as a uni-modular vector, Si ·Si = 1. Furthermore, because
the mechanism responsible for the spin-spin interaction is short-ranged, it is a
good idea to treat the case of nearest-neighbor interaction only, so that Jij is
non-zero if and only if i and j are the two adjacent sites of the lattice. The
sign of J can be either negative, in which case the model is ferromagnetic, or
positive (antiferromagnetic). How and why long-range magnetic order occurs
for models such as (7.1) is an important subject for the theory of magnetism.

7.1.1 Mean-field Theory

The simplest variant of the Heisenberg model that gives the long-range ordering
of spins is given by the Ising model

H = Jz

∑

〈ij〉
SizSjz. (7.2)

From here on we will drop the z altogether, and treat the ferromagnetic case
Jz = −J < 0 first. Due to the uni-modular condition, Siz can only point
either up (Siz = +1), or down (Siz = −1). It is claimed that a simple model
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like the Ising model above is sufficient to capture the qualitative features of
ferromagnetism and the transition from para- to ferro-magnetic phase.

Ising model is a many-body model in the sense that spin at site i interacts
with its neighboring spins at j each of which interacts with its own neighbors
at k, ad infinitum. In essence, two spins which are very very far apart manage
to affect, and be affected by, each other. In this regard, solving for the Ising
model is a lot like solving coupled, multi-variable equations. For the Ising
model, the number of variables equals the number of spins, which is a huge
number of Avogadroian scale. To get the answers you must know the values
of all the variables at once. In most cases, of course, exact, analytic answers
won’t be available, and one must rely on approximations. However, the nature
of approximation must be such that you can later make systematic improvement
should you wish to get a more accurate answer. And often times, a reasonable
approximation is the one based on sound physical picture. A general guiding
principle for reducing a hard, interacting problem to a simple, non-interacting
problem has been found a long time ago, and goes under the title of “mean-field
theory”

Let’s look at the energy Eq. (7.2) from the perspective of a spin at one
particular site, i. Then the piece of the total energy that it cares about is given
by

Ei = −Si(J
∑

j∈i

Sj). (7.3)

Here we introduced j ∈ i to indicate a sum over all nearest neighbors of i. For
a moment write hi ≡ J

∑
j∈i Sj , then Ei becomes −hiSi, which looks exactly

like the energy of a single, isolated spin subject to an external magnetic field
hi. Of course hi is not really an external field; it is a variable, that depends
on the spin values of sites j. If Sj changes, then so does hi. But rewritten in
this suggestive form, it shows that what the neighboring spins do is basically to
provide an effective magnetic field on the i-th spin.

Here comes the key logical loop:

If spins do order, then Sj are more or less a fixed number, and so is hi. So
in effect, Si is subject to a more or less constant magnetic field which polarizes
the orientation of Si and gives rise to a finite average of Si.

The nature of the argument, as you can see, is self-consistent, and the self-
consistency is one of the defining characteristics of any mean-field theory.

So, let’s do make the replacement

hi = J
∑

j∈i

Sj → J
∑

j∈i

mj , (7.4)

where mj ≡ 〈Sj〉 is the thermodynamic average, and define the mean-field
energy as

Emf =
∑

i

Ei = −
∑

i

hiSi. (7.5)

In this form, the spins are no longer interacting with each other. Partition
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function can be readily derived,

Zi =
∑

Si=±1

e−βEi = 2 cosh[βhi]

Zmf =
∏

i

Zi =
∏

i

(2 cosh[βhi]). (7.6)

Magnetization of the spin at each site follows immediately:

mi = 〈Si〉 = tanh(βhi). (7.7)

We have thus managed to reduce the initial, difficult many-body problem to
something that involves only one site index i at a time. But wait.... We have
reduced the problem to something that looks simpler, but have we really solved
it yet?

Remember that hi = J
∑

j∈i mj , and that mi = tanh(βhi). From these we
derive

mi = tanh(βJ
∑

j∈i

mj), (7.8)

which is a set of N coupled equations in N variables {mi}!! As I mentioned
earlier, solving Ising model is really lot like solving coupled, multi-variable,
and non-linear, equations! The many-body nature of the original problem is
embedded in the above, non-linear equations.

The only way to solve equations like these is to make an ansatz. For a
ferromagnet, fortunately, we already know that all spins are equal, mi = m,
and the above, coupled equations reduce to a single equation

m = tanh(βJzm) (7.9)

where z is the coordination number indicating how many neighbors there are for
a given site. For a square lattice z equals 4, and for cubic, z = 6. For generality,
we keep z in the expression. The solution of this equation can be found by
graphical means, or by two short lines of programming on Mathematica. You
will find a familiar curve of m as a function of T which saturates to 1 at low
temperature and vanishes as

√
Tc − T near Tc ≡ Jz.

7.1.2 Magnetic susceptibility

The lesson of the mean-field analysis is that there exists a transition temperature
Tc which separates the ferromagnetically ordered phase from the paramagnetic
one. The paramagnetic phase of a magnet is similar to the paramagnetic phase
we discussed in the previous chapter, where we deduced the paramagnetic sus-
ceptibility

χp =
S(S + 1)g2µ2

B

3kBT
. (7.10)

The ferromagnetic susceptibility in the paramagnetic phase is given by

χf =
S(S + 1)g2µ2

B

3kB(T − Tc)
(7.11)
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where the mean-field analysis give Tc = zJS2 = zJS(S + 1).
From the paramagnetic susceptibility 1/χ plotted against T yields a slope

which equals the inverse of S(S + 1)g2µ2
B/3kB . The intercept of the (1/χ, T )

curve gives the transition temperature. By independently measuring Tc we can
also extrapolate the exchange energy by the relation

J =
Tc

zS(S + 1)
. (7.12)

7.1.3 Magnons

Visualize throwing a small piece of rock into a pond in the pristine hours of the
morning and watching the ripples emanate from the point of the rock’s entry.
Pretty much the same thing happens in the system composed of many spins.
The ground state we have worked out in the previous chapter corresponds to
an utterly still surface of the pond. A disturbance, such as throwing a rock,
can cause ripples on the pond’s surface, which in the case of spin systems we
call “spin waves”. A spin wave is just a collective motion of the spins in the
same way that a ripple is a collective dance of all the water droplets composing
the surface. Various things, or “perturbations” can excite the spin waves. For
instance, a magnetic field applied locally over a small portion of the magnet will
tilt the spins in that region to lie along the direction of applied field. If you
suddenly turn it off, the spins will try to move back to its ground state position.
In so doing, they will necessarily cause the spins outside the region to dance
together with them because spins tend to interact with its neighboring spins.

How each spin will dance in coordination with the others is determined by
the Hamiltonian

H = −J
∑

〈ij〉
Si · Sj , (7.13)

and the equation of motion for the individual spin Si that follows from it. We
first remind ourselves of the fundamental commutation relations of spin

[Sα
i , Sβ

j ] = iδijεαβγSγ
i (~ ≡ 1). (7.14)

From this one can calculate, for instance,

dSx
i

dt
= −i[Sx

i ,H] = −J
∑

j∈i

(
Sy

j Sz
i − Sz

j Sy
i

)
= −J

∑

j∈i

(
Sj × Si

)x
. (7.15)

Combined with the equation of motion for the y- and z-components, we get

dSi

dt
= −J

∑

j∈i

Sj × Si. (7.16)

This equation is of a typical, nonlinear type because the quantities we must
solve for, Si, appears as a product on the r.h.s. In other words, one can never
solve the above equation exactly. However we must remind ourselves that it
is the small fluctuation away from the ground state that concerns us, and as
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such we can decompose the spin operator as Si = 〈Si〉 + δSi = mi + δSi,
where mi represents the ground state spin average. For a ferromagnetic ground
state, mi = Sẑ. A small fluctuation means |〈Si〉| À |δSi|. In making such a
comparison of magnitudes we must be careful to remember that mi is a number,
but δSi is not. So, it’s not altogether clear what exactly we mean by the
magnitude of δSi. Nevertheless, we can at least make the substitution Si =
mi +δSi as a matter of formal definition, and proceed to plug it into Eq. (7.16).

d

dt
δSi = −J

∑

j∈i

(
mj + δSj

)× (
mi + δSi

)

≈ −J

( ∑

j∈i

mj

)
×mi − J

( ∑

j∈i

mj

)
× δSi − J

( ∑

j∈i

δSj

)
×mi(7.17)

ignoring terms of order
(
δS

)2. Once again, the justification is that δS is a small
quantity, and (δS)2, even smaller. We take the quantization axis ẑ and write
mi = mẑ everywhere. Then1

d

dt
δSi = −Jzmẑ × δSi − Jm

( ∑

j

δSj

)
× ẑ. (7.18)

The ẑ-component of this equation reads d
dtδS

z
i = 0, hence the fluctuation in the

ẑ-component of spin is zero, Sz
i

(
t
)

= m. For the x̂-and ŷ-components we get

d

dt
Sx

i = JzmSy
i − Jm

∑

j∈i

Sy
j ,

d

dt
Sy

i = −JzmSx
i + Jm

∑

j∈i

Sx
j . (7.19)

We have dropped the δ symbol in front. Introducing the complex notation
Zi ≡ Sx

i + iSy
i simplifies the equation a lot:

dZi

dt
= iJm


∑

j∈i

Zj − zZi


 . (7.20)

We will solve this equation using the ansatz

Zi = Z0e
ik·ri−iωkt, (7.21)

which yields the self-consistency condition

ωk = Jm


z −

∑

j∈i

eik·(rj−ri)


 . (7.22)

For a 3-dimensional cubic lattice,
∑

j∈i eik·(rj−ri) = 2(cos kx + cos ky + cos kz),
and with z = 6, ωk = 2Jm(3 −∑

α cos kα). For 2D square lattice we will get
ωk = 2Jm(2− cos kx − cos ky). This is the desired spin wave energy for a spin
disturbance associated with a wavevector k.

1I apologize for the multiple use of z here: z is the number of neighbors, or the coordination
number, whereas ẑ is the unit vector along the z-axis.
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7.1.4 Antiferromagmentism and Ferrimagnetism

In an antiferromanget the spins are ordered in antiparallel arrangement with
zero net moment at temperatures below the transition (Neel) temperature. Each
sublattice has a macroscopic magnetic moment which is cancelled by the mag-
netic moment of the other sublattice. The susceptibility χ rises as

χaf =
C

T + θ
. (7.23)

From the plot of (1/χ, T ) and reading off the intercept one can deduce the Curie
temperature θ. It is often not the same as the Neel transition temperature TN .
When θ/TN À 1 we say the magnet is frustrated. The magnon spectrum in the
antiferromagnetically ordered phase disperses linearly with k: ω ∼ k, not ∼ k2

as in the ferromagnet.

7.2 Superconductivity

Kamerlingh Onnes in 1991 discovered that mercury, a kind of metal, loses its
electrical resistance when cooled below the critical temperature of 4K. An ex-
tremely pure copper may also have a very low resistance but there is a qualita-
tive difference between a good metal and a superconductor. When the external
driving force, the battery, is pulled off, even the best conductor loses conduction
in a matter of 10−13s. A superconducting ring on the other hand can sustain
a stable current without an external driving force for over a year. Response to
external magnetic field highlights the difference even more.

Typical metals are more or less transparent to the magnetic field, meaning
that the fields penetrate the metal as if it was not there. For a superconductor
the fields are completely repelled from it. This is the Meissner effect. The fact
that Meissner effect is closely tied to the dissipationless flow of current can be
seen from the following gedanken experiment.

Imagine a loop of superconducting wire with a current I flowing around
it. Due to scattering with impurities and phonons the current wants to slow
down. Less current means less magnetic flux penetrating through the inside of
the loop, and that means some flux lines will have to go through the wire to
leave the interior ring. But going through the wire is disallowed in the case of
a superconductor, so the current will have to maintain its constant value. Now
this qualitatively sums up the phenomena of superconductivity. The question
is how one can explain it.

The efforts to answer the origin of superconductivity took up some of the
best minds in the history of the 20th century physics including Pauli, Bloch, and
even Feynman. Eventually it was due to Bardeen (another giants of the 20th
century physics), Cooper (Bardeen’s then post-doc) and Schrieffer (Bardeen’s
then graduate student) to figure out the correct theory of superconductivity -
the BCS theory. To explain microscopic theory is one thing, but one can go
a long way to understand superconductivity using only the phenomenological
approaches. The phenomenological approach is still used nowadays when a new
phenomenon shows up in some novel superconducting materials, and even to
understand simple phenomenon using a simple language rather than the many-
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body language with which the BCS theory had been written down.

7.2.1 Phenomenological Theory

Phenomenological theory is from its inception designed to understand or re-
produce the known set of phenomena. The most compelling phenomenological
mystery of superconductivity, as I said above, is the complete expulsion of mag-
netic fields from the metals’ interior. This falls into the realm of how the elec-
trons constituting the superconductor respond to the external electromagnetic
field. It is assumed that electrons move in response to the electric field without
damping, so that

m
dv
dt

= −eE,
dj
dt

=
ne2

m
E. (7.24)

There is also a relation between the current density j and the magnetic field
defined by one of four Maxwell’s equations (bear in mind that Maxwell’s equa-
tions are absolutely true, whether the medium be a metal, an insulator, or a
superconductor)

∇×B = 4πj +
dD
dt

. (7.25)

The displacement current D is small compared to the physical current and
can be ignored. Hence, taking the time derivative on both sides of the above
equation gives

d

dt
(∇×B) = 4π

dj
dt

=
4πne2

m
E. (7.26)

A second Maxwell’s equation, (dB/dt) +∇ × E = 0, allows us to re-write the
above equation in the form

d

dt
(∇×∇×B) =

4πne2

m
(∇×E) = −4πne2

m

dB
dt

,

d

dt

(
∇×∇×B +

4πne2

m
B

)
= 0. (7.27)

Knowing that the magnetic field is always expelled from the inside of a
superconductor, i.e. B(t) = 0, London assumed that the quantity inside the
parenthesis in the last of the above equation must be zero:

∇× (∇×B) +
4πne2

m
B = 0. (7.28)

This is the London’s equation.2 Since ∇×(∇×B) = ∇(∇·B)−∇2B = −∇2B,
London’s equation is reduced to

B− λ2
L∇2B = 0,

1
λ2

L

=
4πne2

m
. (7.29)

2London’s equation also implies ∇× j + (ne2/m)B = 0, i.e. a linear relation between the
current and magnetic field.
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λL is the London penetration depth. To see why λL has anything to do with
penetration, take the case of a superconductor which occupies all of space for
z < 0. Looking for solutions which are independent of x and y, one gets

B− λ2
L

d2B
dz2

= 0, (7.30)

the solution of which is B(z) ∼ B0e
z/λL . The magnetic field inside the super-

conductor decays over the characteristic length set by λL. Since the current
is related to the penetrating field, it is also evident that the current can only
reside on the surface of the thickness ∼ λL.

Such is the approach used by London to understand the repulsion of magnetic
flux in a superconductor. It is admittedly ad-hoc, and only capable of describing
one aspect of superconductivity. A more general framework is provided by
the Ginzburg-Landau theory advanced by (who else?) Landau and his finest
disciple, V. L. Ginzburg.

At the time Landau and Ginzburg advanced their theory of course they did
not know exactly what was causing superconductivity. In hindsight we know
that a finite density of superconducting, or condensate electrons is responsi-
ble for superconducting phenomenon. In analogy with the way we understood
magnetism, we may assume the free energy to be a functional of the supercon-
ducting electron density, |ψ|2. Here ψ is sort of like the wave function of an
electron, but of course it cannot be exactly that, because there are many, many
electrons in a superconductor and we haven’t specified which one electron we
are describing with this wave function. For electrons no two electrons can be in
the same quantum state, so every electron’s wave function ought to be different.
For bosons, on the other hand, it is possible that many particles occupy the
same state. In particular the lowest energy state has a good chance of being oc-
cupied by a huge number of particles. If that happened, then it makes sense to
talk about THE WAVE FUNCTION, since majority of the particles are sitting
in the same quantum state anyway. But then electrons are not bosons, hence
the conundrum.

A beautiful resolution of this paradox is what made Bardeen and his disciples
so famous.3 They argued that electrons first pair up, so that the pair behaves as
a boson. Then a large number of these bosons can sit in the same state. ψ is the
wave function for the bosonic pairs of electrons, not for the individual electrons.
To be slightly more concrete, a boson pair is made up of one electron having
momentum k and spin ↑, and another electron having the opposite momentum
−k and spin ↓. The corresponding paired state is described by the operator

B+
k = c+

k↑c
+
−k↓ − c+

k↓c
+
−k↑. (7.31)

The way we arranged the operators ensure that the spin sector remains in a
singlet state.

I wish we could say that B+
k operator defined above obeys the boson commu-

tation rules and a macroscopic number of particles sit in that state, etc. Unfor-
tunately the story is not so simple. The analogy with the Bose condensation of
paired electrons, in my view, is at most allegorical. Nevertheless, description of

3I read it in some article that Bardeen and his wife was hosting some guests but Bardeen
was so deeply immersed in thoughts that he hardly paid attention to the invitees. When the
guests were ready to leave Bardeen got up and said, “I know how to solve superconductivity.”
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the superconducting state in terms of the macroscopic wave function ψ proved
to be a successful idea, and it continues to be a fruitful way to think about and
solve superconductivity. In the spirit of Landau-Ginzburg theory we expand the
free energy in powers of ψ as

F = F0+
∫

d3r
(

α|ψ(r)|2 +
β

2
|ψ(r)|4 +

1
8π

B(r)2 +
1

2m
|(−i~∇+ 2eA(r)]ψ(r)|2

)
.

(7.32)
The vector potential A,∇×A = B is introduced to describe coupling of paired
electrons with the electromagnetic field. Minimizing the free energy with respect
to ψ yields

[
α + β|ψ|2 +

1
2m

(−i~∇+ 2eA)2
]
ψ = 0. (7.33)

Minimizing the free energy with respect to A yields the relation4

∇×B = 4πj

j = − 2e~
2im

[ψ∗∇ψ − ψ∇ψ∗]− 4e2

m
A|ψ|2. (7.34)

When the self-consistent solutions of Eqs. (7.33) and (7.34) gives non-zero ψ one
say it’s in a superconducting state. Otherwise ψ = 0 implies normal state. We
will use es ≡ 2e and ms ≡ m to represent charge and mass of superconducting
pair of electrons, respectively.

Without the external field to worry about one has only one equation to solve:

α + β|ψ|2 = 0. (7.35)

Assuming that α = α0(T − Tc), ψ follows |ψ| =
√

α0(Tc − T )/β for T < Tc. Tc

represents the temperature at which superconductivity sets in. A spectacular
set of predictions can be made on the basis of the GL equations which agree very
well with the phenomenology of superconductors. To name a few, I mention flux
quantization, Josephson effects, existence of two types of superconductors, and
Abrikosov vortex lattice in type-II superconductors.

7.2.2 Type-I and type-II superconductors

The GL theory defines two length scales, coherence length ξ and the London
penetration depth λL, each defined by

ξ2 =
~2

2m|α| , λ2
L =

mβ

4π|α|e2
s

. (7.36)

Real superconductors also have these two lengths scales. They are well docu-
mented and tabulated. The coherence length has to do with the rescaling of the

4If you were to interpret ψ as the density of only those electrons in the superconducting
state, one find the relation that ∇ × B = 4πjs, where js is NOT the total electron current,
but only the current density of the superconducting electrons. This is in clear violation of
the Maxwell’s equations. Landau-Ginzburg theory does not seem to say how to resolve this
apparent conflict clearly.
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GL equation (7.34) by the maximal allowed value of |ψ|M =
√
−α/β. If you

re-define ψ/|ψ|M to be the new ψ, the GL equation reads

−ξ2∇2ψ − ψ + ψ|ψ|2 = 0 (7.37)

in the absence of the vector potential. The equation can be solved exactly in
one dimension with the solution

ψ = tanh
x√
2ξ

. (7.38)

This solution extends to ±1 as x tends to ±∞ and describes how the condensate
wave function evolves between two superconductors having different phases for
ψ. ξ represents a “healing length” over which the transition from one supercon-
ductor’s behavior to the other is achieved.

Penetration depth, as we saw in the London’s equation, has to do with the
response of a superconductor to applied magnetic field. Looking at the relation
(7.34) for the current density in the presence of the vector potential one finds
that j ≈ −(e2

s/m)|ψ|2A when the condensate is more or less uniform and the
applied field is weak. Taking the curl on both sides and invoking the Maxwell’s
equation,

4π∇× j = −4πe2
s

m
|ψ|2∇×A = −e2

s

m
|ψ|2B = ∇×∇×B →

∇2B =
4πe2

s|ψ|2
m

B ≡ 1
λ2

L

B (7.39)

Using |ψ|M = |α|/β immediately gives λL as defined previously.
If one re-scaled the distance in units of ξ the LG equation (7.37) becomes

dimensionless. This cannot be achieved when A is also present. One can also
introduce a dimensionless vector potential a ≡ (2es/

√
2m|α|)A to renders the

two LG equations as

ψ − ψ|ψ|2 + (−i∇+ a/2)2ψ = 0
λ2

L

ξ2
∇×∇× a = i(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2a. (7.40)

Hence it proves that

κ =
λL

ξ
(7.41)

is the only free parameter in the GL theory.
Discussion of surface energy

7.2.3 Flux quantization

7.2.4 Josephson effects

7.2.5 Abrikosov vortex lattice

7.3 CDW and SDW



7.4. EXERCISE 63

7.4 Exercise

[1, Kittel, Chap. 12, Prob. 2][20pts] Use the approximate magnon disper-
sion relation ω = Ak2 to find the leading term in the heat capacity of a
three-dimensional ferromagnet at low temperatures kBT ¿ J . The result is
0.113kB(kBT/~A)3/2 per unit volume.

[2, A&M, Chap. 33, Prob. 3][20pts] Show that the ground state of the four spin
antiferromagnetic nearest-neighbor Heisenberg linear chain,

H = J(S1 · S2 + S2 · S3 + S3 · S4 + S4 · S1) (7.42)

is

E0 = −4JS2

(
1 +

1
2S

)
. (7.43)

[3, A&M, Chap. 33, Prob. 7][30pts] Consider a magnetic structure made up
of two types of spins that occupy two interpenetrating sublattices. Let spins
within sublattice 1 be coupled by exchange constants J1, within sublattice 2,
by J2, and between sublattices 1 and 2, by J3. Derive the mean-field equations
for the spontaneous magnetization of the sublattices M1 and M2.

[4, A&M, Chap. 34, Prob. 4] Do the Cooper problem.
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Chapter 8

Special Topics

8.1 Peierls transition

8.2 Mott transition
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